
COMPUTER VISION TRACKING USING PARTICLE FILTERS FOR 3D

POSITION ESTIMATION

THESIS

Kyle D. Kenerley, Second Lieutenant, USAF

AFIT-ENY-14-M-28

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENY-14-M-28

COMPUTER VISION TRACKING USING PARTICLE FILTERS FOR 3D POSITION

ESTIMATION

THESIS

Presented to the Faculty

Department of Aeronautical and Astronautical Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Kyle D. Kenerley, B.S.A.E.

Second Lieutenant, USAF

March 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENY-14-M-28

COMPUTER VISION TRACKING USING PARTICLE FILTERS FOR 3D POSITION

ESTIMATION

Kyle D. Kenerley, B.S.A.E.
Second Lieutenant, USAF

Approved:

//signed//

Alan L. Jennings, PhD (Chairman)

//signed//

Jonathan T. Black, PhD (Member)

//signed//

Daniel D. Doyle, PhD (Member)

17 Mar 2013

Date

11 Mar 2014

Date

11 Mar 2014

Date

AFIT-ENY-14-M-28
Abstract

This line of research seeks to increase knowledge of a tracked target using the particle

filter, also known as Sequential Monte Carlo (SMC) methods. The target is tracked using

vision based observations. These observations were simulated using both dual cameras

and a single camera. If only a single camera tracks the target, depth cannot be determined

directly and is considered an unobservable state. Filters can estimate this unobservable

state using a dynamic model and data from the image. However the movement of the target

is nonlinear which eliminated filters traditionally used to track motion such as the Kalman

filter and its variants. The particle filter is an alternative that can track nonlinear motion,

but was not feasible until recently due to its computational requirements. Simulations of

nonlinear target movement, first in two dimensions, then three, evaluated the particle filter’s

feasibility and performance. Subsequent simulations evaluated the particle filter’s ability

to track a target using dual and single camera observations. Evaluation tests were devised

to characterize the performance of each filter. Analysis metrics were produced to analyze

the results of these tests. Linear and Kalman filters were also devised to serve as additional

comparisons to the particle filter. Results for dual camera observations demonstrated the

filter could track the target and determine unobservable states, however results for the single

camera observations indicated the filter was problematic since it could not return accurate

depth estimates and suffered from severe weight collapse.

iv

Table of Contents

Page

Abstract . iv

Table of Contents . v

List of Figures . ix

List of Tables . xii

List of Symbols . xiv

List of Acronyms . xviii

I. Introduction . 1

1.1 General Issue . 1
1.2 Problem Statement . 1
1.3 Research Objectives/Questions/Hypothesis 2
1.4 Research Focus . 3
1.5 Methodology . 3
1.6 Assumptions/Limitations . 3
1.7 Implications . 4
1.8 Overview . 4

II. Literature Review . 5

2.1 Overview . 5
2.2 Photogrammetry . 5
2.3 Optical Flow . 5

2.3.1 Limitations of Existing System . 7
2.4 Filters . 7

2.4.1 Bayes’ Theorem . 7
2.4.2 Bayes Filter . 8
2.4.3 Kalman Filter . 10

2.4.3.1 Kalman Filter Prediction Step 10
2.4.3.2 Kalman Filter Update Step 11

2.4.4 Extended Kalman Filter . 11
2.5 Particle Filter . 12

2.5.1 Goal of the Particle Filter . 12

v

Page

2.5.2 Monte Carlo Methods . 14
2.5.3 Importance Sampling . 15
2.5.4 Sequential Importance Sampling 16
2.5.5 Particle Filter Process . 17

2.5.5.1 Initialization . 17
2.5.5.2 Importance Sampling 17
2.5.5.3 Selection . 18
2.5.5.4 Re-sampling Algorithm 19
2.5.5.5 Visual Depiction of Particle Filter Process 20

2.5.6 Limitations of the Particle Filter 21
2.5.7 Uses of the Particle Filter . 22

2.6 Conclusion . 22

III. Methodology: Prototype Filters . 23

3.1 Introduction . 23
3.2 System Design Approach . 23
3.3 Prototype Particle Filter A: Single Variable Tracking 23
3.4 Prototype Particle Filter B: Multi-Variable Tracking and Hidden State

Determination . 25
3.4.1 Target Model . 25
3.4.2 Measurements . 26
3.4.3 Particle Filter Model . 26
3.4.4 Kalman Filter Model . 28
3.4.5 Simulation Scenarios . 29

3.4.5.1 Scenario 1: No System or Measurement Noise 30
3.4.5.2 Scenario 2: Measurement Noise, No System Noise 34
3.4.5.3 Scenario 3: System Noise and Measurement Noise 37
3.4.5.4 Scenario 4: Weight Discrepancy and Collapse 41

IV. Methodology: Application Filters . 47

4.1 Introduction . 47
4.2 System Design Approach . 47

4.2.1 Coordinate Frames . 47
4.2.2 Target Model . 51
4.2.3 Measurement Model . 52
4.2.4 Global Frame Equations . 53
4.2.5 Camera Frame Equations . 55
4.2.6 Pixel Frame Equations . 55
4.2.7 Acceleration and Depth Knowledge 58

4.3 Evaluated Particle Filter A . 58

vi

Page

4.3.1 Initialization and Proposal Distribution 58
4.3.2 Importance Sampling . 59
4.3.3 Resampling and Global State Estimation 60
4.3.4 Preliminary Evaluation . 60

4.4 Evaluated Particle Filter B . 61
4.4.1 Preliminary Evaluation . 65

4.5 Weight Collapse Mitigation . 66
4.5.1 Depth Vector Variation . 67
4.5.2 State Jacobian Variation . 67
4.5.3 Weighing Matrix Adjustment . 69

V. Simulation Tests and Results . 70

5.1 Introduction . 70
5.2 Particle Filter Performance Evaluation . 70

5.2.1 Performance Metrics . 71
5.2.1.1 Mean Absolute Error 71
5.2.1.2 Threshold Error Range 72
5.2.1.3 Metric Variables . 73

5.2.2 Comparison Models . 74
5.2.2.1 Linear Model A: Filter A 74
5.2.2.2 Linear Model B: Filter B 75
5.2.2.3 Evaluate Kalman Filter A 76

5.3 Evaluated Particle Filter A . 78
5.3.1 Orthogonal Axes Movement . 79
5.3.2 Circular Movement . 99
5.3.3 Unconstrained Motion . 118
5.3.4 Evaluated Particle Filter A Summary 125

5.4 Evaluated Particle Filter B . 125
5.4.1 Equal Matrix . 128
5.4.2 Unequal Matrix . 134
5.4.3 Evaluated Particle Filter B Summary 146

VI. Conclusions and Future Work . 147

6.1 Conclusion . 147
6.2 Practical Considerations . 148
6.3 Future Work . 151

Appendix: MATLAB Code . 153

A.1 Introduction . 153

vii

Page

A.2 Prototype Particle Filter A . 153
A.3 Prototype Particle Filter B . 156
A.4 Evaluated Particle Filter A . 159

A.4.1 EPF A Execute Final . 159
A.4.2 EPF A Function Final . 186

A.5 Evaluated Particle Filter B . 204
A.5.1 EPF B Execute Final . 204
A.5.2 EPF B Function Final . 236

Bibliography . 267

viii

List of Figures

Figure Page

2.1 Visual Depiction of the Discrete Probability Distribution 13

2.2 The State-Space . 14

2.3 Bootstrap Particle Filter Process [11, 12] . 20

3.1 Prototype Particle Filter A: Non-linear Function Demonstration 24

3.2 Prototype Particle Filter B (PPF-B): Mean Error for No System or Measure-

ment Noise . 31

3.3 PPF-B: Single Run for No System or Measurement Noise 32

3.4 PPF-B: Mean Error for No System Noise . 35

3.5 PPF-B: Single Run for No System Noise . 36

3.6 PPF-B: Mean Error for System and Measurement Noise 39

3.7 PPF-B: Single Run for System and Measurement Noise 40

3.8 PPF-B: Weight Discrepancy and Collapse . 43

3.9 PPF-B: Iteration Prior to Weight Collapse . 45

4.1 Global Transformation from MATLAB Default Orientation 48

4.2 Transformation from Global to Camera Frame 49

4.3 Transformation from Camera to Pixel Frame 50

4.4 Target in Global Frame . 51

4.5 Target Centroid and Measurement Points . 53

4.6 Relationship Between Focal Length and View Angle 57

4.7 Filter A Preliminary Evaluation: Position . 62

4.8 Filter A Preliminary Evaluation: Velocity . 63

4.9 Particle Filter B Weight Collapse . 66

5.1 Threshold Error . 73

ix

Figure Page

5.2 Performance Metric Variables . 74

5.3 Mean Error for Axial Movement without Measurement Noise 82

5.4 Threshold Error for Axial Movement without Measurement Noise 83

5.5 Single Simulation for x-Axis Movement without Measurement Noise 84

5.6 Single Simulation for y-Axis Movement without Measurement Noise 85

5.7 Single Simulation for z-Axis Movement without Measurement Noise 86

5.8 Comparison of Threshold Values for X-Axis Movement with No Measurement

Noise . 90

5.9 Mean Error for Axial Movement with Measurement Noise 92

5.10 Threshold Error for Axial Movement with Measurement Noise 93

5.11 Single Simulation for x-Axis Movement with Measurement Noise 94

5.12 Single Simulation for y-Axis Movement with Measurement Noise 95

5.13 Single Simulation for z-Axis Movement with Measurement Noise 96

5.14 Mean Error for Circular Rotation without Measurement Noise 101

5.15 Threshold Error for Circular Rotation without Measurement Noise 102

5.16 Single Simulation for xy-Plane Circular Rotation with Measurement Noise . . . 103

5.17 Single Simulation for xz-Plane Circular Rotation with Measurement Noise . . . 104

5.18 Single Simulation for yz-Plane Circular Rotation with Measurement Noise . . . 105

5.19 Target and EPF-A Variable Relationships . 107

5.20 Mean Error for Circular Rotation with Measurement Noise 111

5.21 Threshold Error for Circular Rotation with Measurement Noise 112

5.22 Single Simulation for xy-Plane Circular Rotation with Measurement Noise . . . 113

5.23 Single Simulation for xz-Plane Circular Rotation with Measurement Noise . . . 114

5.24 Single Simulation for yz-Plane Circular Rotation with Measurement Noise . . . 115

x

Figure Page

5.25 Single Simulation for Unconstrained States, in Global Frame, with Measure-

ment Noise . 119

5.26 Mean Error for Unconstrained Motion . 121

5.27 Threshold Error for Unconstrained Motion . 122

5.28 MAE for Equal Weight Matrices with System Noise 124

5.29 MAE for Equal Weight Matrices with No Noise 129

5.30 TER for Equal Weight Matrices with No Noise 130

5.31 MAE for Equal Weight Matrices with Noise 132

5.32 TER for Equal Weight Matrices with Noise 133

5.33 MAE for Unequal Weight Matrices without Noise 135

5.34 TER for Unequal Weight Matrices without Noise 136

5.35 MAE for Unequal Weight Matrices with Noise 138

5.36 TER for Unequal Weight Matrices with Noise 139

5.37 Mean and Threshold Depth Error . 141

xi

List of Tables

Table Page

3.1 PPF-B Scenario: Initial Conditions . 29

3.2 PPF-B Scenario: Parameters . 30

3.3 Mean Errors for Last 50 Time Steps without System or Measurement Noise . . 33

3.4 PPF-B Scenario 2: Variances . 34

3.5 Mean Errors without System or Measurement Noise 37

3.6 PPF-B Scenario 3: Variances . 38

3.7 Mean Errors without System or Measurement Noise 41

3.8 PPF-B Scenario 2: Variances . 41

4.1 Global Frame Target States . 52

4.2 Image Properties . 57

4.3 Filter A Preliminary Evaluation Initial Conditions 60

4.4 Filter A Preliminary Evaluation Measurement Noise Variances 61

4.5 Filter A Preliminary Evaluation: Mean Errors 61

4.6 Filter B Preliminary Evaluation Initial Conditions 65

5.1 EPF-A Scenario Parameters . 79

5.2 Orthogonal Axes Initial Conditions . 80

5.3 Measurement Noise Variations . 80

5.4 Evaluated Particle Filter A Legend Acronyms 81

5.5 Mean Axial Errors for Last 50 Time Steps without Measurement Noise 88

5.6 Mean Axial Errors for Last 50 Time Steps with Measurement Noise 98

5.7 Circular Rotation Initial Conditions . 100

5.8 Circular Motion Time Unit Ranges for Mean Error 108

5.9 Mean Circular Errors for Variable Time Steps without Measurement Noise . . . 109

xii

Table Page

5.10 Mean Circular Errors for Variable Time Steps with Measurement Noise 117

5.11 Unconstrained Motion Initial Conditions . 118

5.12 Mean Unconstrained Motion Errors for Last 50 Time Steps 123

5.13 Mean Unconstrained Motion Errors with System Noise for Last 50 Time Steps 125

5.14 EPF-B Scenario Initial Conditions . 127

5.15 EPF-B Scenario Parameters . 127

5.16 Measurement Noise Variations . 128

5.17 Measurement Noise Variations . 128

5.18 EPF-B Time Unit Ranges for Mean Error . 142

5.19 EPF-B and Comparison Mean Errors for Measurements without Noise 143

5.20 EPF-B and Comparison Mean Errors for Measurements with Noise 144

5.21 Weight Collapse for Measurements without and with Noise 145

xiii

List of Symbols

Symbol Definition

X,Y,Z global principal axes

U,V,W camera principal axes

Up,Vp pixel principal axes

x, y, z position in global frame

u, v,w position in camera or pixel frame, depending on subscript

V speed/velocity magnitude (component of velocity)

θ tilt (component of velocity)

φ pan (component of velocity)

a acceleration

θ̇ tilt angle rate of change

φ̇ pan angle rate of change

α pan angle (deg) of camera

β tilt angle (deg) of camera

x states

y measurements

H hypothesis

D data

p() discrete probability distribution (unless otherwise noted)

π proposal distribution

ω importance weight

i index of normalized weights

δ Dirac-delta function

x state vector

xiv

Symbol Definition

u process input

y measurement vector

w state (system) noise

v measurement noise

g state propagation vector

h measurement propagation vector

A state transition model matrix

B control input model

uk Kalman control vector

Q state (system) noise covariance

C observation model

K Kalman gain

I identity matrix

R measurement noise covariance

n individual particle (sample)

N total number of particles (samples)

σ2() variance

σ() standard deviation

ru uniform random number

rn normal random number

Ne f f number of effective particles

Ω weighing matrix

Ω() component of weighing matrix

m individual observed point

M total number of observed points

xv

Symbol Definition

f l focal length

γ angular error between filter and target

∆X change in hidden states

∆S change in observation states

s f1 , s f2 scaling factors 1 and 2

λ eigenvalues

V eigenvectors

xMAE state mean absolute error

xs vector of states sorted low to high

xT ER state threshold error range

τ percentile value for TER

q number of simulations

D Euclidean distance between filter prediction and target

RDCM rotation direction cosine matrix

Subscripts

G global frame

C camera frame

p pixel frame

t discrete time step

T target

f filter

LM linear model

k Kalman filter

xvi

Symbol Definition

Superscripts

∼ unweighted states

∧ normalized weights

T transpose

xvii

List of Acronyms

Acronym Definition

AFIT Air Force Institute of Technology

ASIR Auxiliary Sampling Importance Re-sampling

BPF Bootstrap Particle Filter

DC Depth-Compensated Evaluation Particle Filter B

DCM Direction Cosine Matrix

DPD Discrete Probability Distribution

EKF Extended Kalman Filter

EW Equally Weighted Weighing Matrix

PDF Probability Density Function

EKF-A Evaluation Kalman Filter A

EPF-A Evaluation Particle Filter A

EPF-B Evaluation Particle Filter B

IS Importance Sampling

JC Jacobian-Compensated Evaluation Particle Filter B

MAE Mean Absolute Error

MC Monte Carlo

NC Non-Compensated Evaluation Particle Filter B

PKF-A Prototype Kalman Filter A

PKF-B Prototype Kalman Filter B

PMF Probability Mass Function

PPF-A Prototype Particle Filter A

PPF-B Prototype Particle Filter B

PTZ Pan-Tilt-Zoom

xviii

Acronym Definition

RPF Regularized Particle Filter

SIR Sequential Importance Resampling

SIS Sequential Importance Sampling

SLMA Simple Linear Model A

SLMB Simple Linear Model B

SMC Sequential Monte Carlo

TER Threshold Error Range

UW Unequally Weighted Weighing Matrix

2-D Two-Dimensional

3-D Three-Dimensional

xix

COMPUTER VISION TRACKING USING PARTICLE FILTERS FOR 3D POSITION

ESTIMATION

I. Introduction

1.1 General Issue

With the advent of computers approximately 50 years ago, there is a general trend

pushing computer systems to simulate natural abilities, such as vision and motion. What

seems natural to humans, such as spotting and following a moving object such as a Frisbee,

is challenging for computers. The two elements used by humans are the eyes to see and

follow the target, and the brain to process the images. The analogous computer components

are pan/tilt/zoom Pan-Tilt-Zoom (PTZ) cameras to ’see’ and track the target and software

to process the images from the cameras. Humans are innately able to differentiate between

a moving target, other targets, the background, and any appearance of movement due to

movement of the eyes or heads. Computers are unable to perform these differences without

complex software. Several key challenges confront these artificial systems, among them,

the ability of a system to identify moving targets and attempt to follow them by predicting

their path against a moving background (i.e. simulating moving eyes and heads of humans).

The focus of this thesis explores a potential method of predicting the movement of targets

by using the particle filter. The particle filter attempts to determine the location and predict

the velocity and heading of a target as much as humans do when catching a Frisbee.

1.2 Problem Statement

The research in this thesis attempts to answer two problems that currently face visual

tracking systems, in particular the visual tracking system being developed at the Air Force

1

Institute of Technology (AFIT). The first problem is the ability of the PTZ cameras to track

a target. Presently, the tracking algorithm looks for a change in a target’s position and does

not attempt to account for an target’s changing velocity when moving the PTZ cameras to

follow the target. The tracking algorithm does not account for a target’s changing velocity

because the only incoming data is how the target moved relative to its last position, or

optical flow. The particle filter attempts to predict the target’s 3-D position, velocity and

heading estimates so the cameras can more accurately follow the target. The particle filter

uses a non-linear model of a target’s movement in 3-D space. The second problem is depth

determination using a single camera. Typically two or more cameras are used to determine

the depth or how far away a target is. A single camera is unable to make this determination

since the camera does not know if the target is changing size or moving towards or away

from the camera. The only data available is the target’s 2-D optical flow; side-to-side and

up-and-down movement, along with the velocities. The particle filter attempts to predict

the depth based on the 2-D optical flow and the velocities as well as any change in the

target’s scale size.

1.3 Research Objectives/Questions/Hypothesis

This research focuses on characterizing the ability of the particle filter to determine

the states of a target in 3-D space using two cameras or using a single camera. The sub-

objectives that must be accomplished to fulfill this goal are detailed below.

• Develop a general model of the tracked object’s dynamics

• Determine if the particle filter can determine hidden states

• Develop a particle filter using measurements from two cameras and evaluate its

performance using simulated data

• Develop a particle filter using measurements from a single camera and evaluate its

performance using simulated data

2

1.4 Research Focus

The focus of this research is to evaluate the viability of the particle filter to a). predict

a target’s position, velocity, and heading states and b). predict depth of a target using a

single camera. The filter results will be compared with a known truth to provide a baseline

comparison.

1.5 Methodology

Model development and simulated data collection will occur within the MATLAB

environment. The path and states of the target moving through Three-Dimensional (3-D)

space will be generated using a non-linear model. A collection of points for the simulated

camera to track will be generated around the moving target point. The particle filter will use

the simulated camera’s measurements of these points as the measurement data and generate

its predicted location of the target in 3-D space. Both the dual camera and single camera

particle filter’s will follow this procedure.

1.6 Assumptions/Limitations

The movement of a target in 3-D space is typically nonlinear, thus several assumptions

concerning the model must be made in order to make the problem tractable theoretically.

The model assumes no changes in acceleration rates of any states. The target is assumed to

not change in size (i.e. the model does not change in form in any way). Thus any change in

size detected by the camera correlates exclusively to a change in distance from the camera.

These model assumptions limit the effectiveness of the filter, however a simpler model

provides a basis for expansion into more complex models. Noise inherent in the model is

assumed to be Gaussian white noise, that is noise with a normal distribution and zero mean.

Additionally, the state and measurement variances must be known or approximated so that

the filter can be tuned properly.

3

1.7 Implications

The PTZ system the particle filter could be implemented on uses two cameras to

determine the location of the target and tracks based on position of the target. The particle

filter has the potential to enable accurate velocity tracking using only position data. With

accurate velocity estimates, better predictions of the target’s future movement could be

made. With better predictions, the PTZ cameras could be steered to more accurately to

track the target resulting in better tracking. Additionally, the particle filter also has the

potential to reduce the number of cameras to a single camera decreasing system complexity

and cost.

1.8 Overview

The subsequent chapter is a review of the literature concerning the optical flow

algorithm, and the motivation to select the particle filter. Additionally, Chapter 2 also

details the methodology of the particle filter and how it works to return state estimates.

Chapter 3 describes several simple particle filters, referred to as prototype particle filters

Prototype Particle Filter A (PPF-A) and PPF-B. These prototype filters were developed

to both demonstrate the particle filter as well as verify basic properties of the particle

filter, notably its ability to determine hidden states. Chapter 4 describes the target model

and particle filters used to simulate the PTZ system for both dual and single cameras.

Note, these particle filters, Evaluation Particle Filter A (EPF-A) and Evaluation Particle

Filter B (EPF-B), are different from the prototype filters PPF-A and PPF-B. Chapter 5

discusses the data analysis of EPF-A and EPF-B and extrapolates results from the data

analysis. Chapter 6 elaborates on the conclusions drawn from the data analysis and provides

recommendations for future research and development.

4

II. Literature Review

2.1 Overview

With the increase in computational speed and portability as well as high-definition

digital optics, there has been a significant amount of research undertaken into the

development of vision-based real-time tracking systems [1]. The current evaluation system

used for this report has well developed tracking capabilities, using optical flow background

estimation as its basis [10]. However it presently possesses a linear Kalman filter for target

tracking, which is not optimized for non-linear target tracking. Chapter 2 summarizes

the applicable research conducted concerning optical flow processing as it relates to the

tracking system used along with a discussion on filters, with a focus on particle filters.

2.2 Photogrammetry

Photogrammetry is the process of determining 3-D coordinates through images. The

mathematical underpinnings of photogrammetry are rooted in the 1480s with Leonardo

da Vinci’s study of perspectives [8, p. 1]. However, digital photogrammetry did not

emerge until the development of the digital cameras in the 1970s. A close relative of

photogrammetry, videogrammetry, determines information based on multiple images taken

over time. Currently photogrammetry and videogrammetry are used in a variety of fields

from topographic mapping to film motion capture and special effects [18, p. 4].

2.3 Optical Flow

Photogrammetry, as it pertains to this research, aims to determine the three-

dimensional coordinates of the target’s centroid based on multiple two-dimensional feature

points seen by the camera. Features represent the object in an image, and a feature is

required to determine the location of a point or set of points that represent an object; hence

5

the term feature points. Feature points are points that can be well described mathematically.

Typical features and definitions are as follows: [12, p. 2-5]

• Color - the apparent color of an object is influenced by two physical factors: 1)

spectral power distribution of the illuminant; 2) the surface reflectance properties of

the object

• Edges - strong changes in image intensities defining object boundaries; less sensitive

to illumination changes

• Optical Flow - dense field of displacement vectors defining the translation of

brightness for each location in consecutive frames

• Texture - statistical measures of the intensity variation of a surface which quantifies

the properties such as smoothness and regularity; less sensitive to illumination

changes

While color is a popular feature, the tracking algorithm developed by Doyle uses optical

flow to detect feature points [12]. The motivation behind this choice is that optical flow is

able to track a wider range of targets than other methods that are more sensitive to a target’s

physical properties. Moving a camera results in a shift of the background image. All

tracking algorithms must discern between actual target movement and apparent movement

induced by the movement of the cameras. By using optical flow to track the target’s

movement, any additional movement of the background can also be tracked using optical

flow and then subtracted from the target’s apparent movement to reveal the target’s actual

movement. Another method to improve tracking is to train a system to recognize the target;

however training is undesired in order to allow the tracking algorithm to function on a

variety of targets and surfaces. Thus, none of the filters used target training.

6

2.3.1 Limitations of Existing System.

As typical with many photogrammetry systems, X and Y coordinates are relatively

accurate, however Z (depth) coordinates are slightly less accurate [12]. Additionally, the

current system requires two cameras for depth estimation and can only track one object

at a time. Although the current system tracks position and velocity states using a Kalman

filter, the weight for velocity is minimal due to the filter’s uncertainty. This uncertainty

stems from the simple control law used by the filter, to regulate the target to the center of

the camera’s vision field.

2.4 Filters

In order to produce meaningful information concerning the location of the tracked

object in the global frame, the incoming pixel data must be filtered. Although a variety of

methods exist, this research focused on Bayesian based filters for reasons detailed in the

subsequent sections. The filter ultimately used, the particle filter, is explored in depth in

Section 2.5.

2.4.1 Bayes’ Theorem.

Bayes’ Theorem is named for Thomas Bayes and was heavily edited and updated by

Richard Price and published in 1763 [3]. The theorem evaluates the probability that a

proposed hypothesis, or prediction, is correct given given observational, or measurement

data, about that hypothesis.

P (H|D) =
P (H) × P (D|H)

P (D)
(2.1)

P (H) is the prior or initial degree of belief in the hypothesis, or predicted states. P(D|H)
P(D)

represents the probability, or how strongly the data D, or measurements, support the

hypothesis. The result is posterior probability, or degree of belief in the hypothesis

having accounted for the data D. Using multiple hypotheses with the same data produces

a Probability Density Function (PDF). The PDF embodies all available statistical

7

information and may be described as the complete solution to an estimation problem

[2, p. 174]. Specifically, the PDF describes the relative likelihood, probability, that a

particular variable will be equal to a certain value. However, the Bayesian estimation is

sensitive to noise that affects the measure of the hypothesis or states x [6]. Thus due to

the amount of noise present in the data or measurements of the pixels as well as in the

camera PTZ movements, a filter is needed that can recover the actual state values from

noisy measurements y. The subsequent filters utilize the state-space model below:

xt+1 = g (xt,ut,wt)

yt = h (xt, vt) (2.2)

The functions g and h describe state and measurement propagation. x is the state, u is

the process input, y is the measurement, w and v are the system (or state or process) and

measurement noise vectors, and t is the discrete time [20].

2.4.2 Bayes Filter.

An extension of the Bayes’ Theorem is Recursive Bayesian Estimation also known as

the Bayes Filter or Grid-Based Filter. The variables, x0:t and y1:t are denoted in Equation 2.3

and 2.5 [11, p. 5].

x0:t , {x0, ..., xt} (2.3)

y1:t ,
{
y1, ..., yt

}
(2.4)

These are the state values and measurements up to time-step t, respectively. Using a

given system and measurement model, the Bayes Filter calculates a new posterior PDF,

p
(
x0:t|y1:t

)
, as well as the marginal posterior PDF, p

(
xt|y1:t

)
, at each time-step based on

the previous state estimate and new incoming measurement. The marginal posterior is also

known as the filtering distribution or posterior filtered density. The filtering distribution

returns the probabilities of various values of variables, the states in this research, without

reference to the values of other variables. This is the posterior PDF of the states x at a

8

single time step, t. Ultimately, the filtering distribution is the PDF of interest since the state

probabilities are separate and not joint. The posterior PDF is given by Bayes’ Theorem at

any time t, as seen in Equation 2.5 [2, p. 108].

p
(
xt|yt−1

)
=

∫
p (xt|xt−1) p

(
xt−1|yt−1

)
dxt−1 (2.5)

A recursive formula for the posterior PDF, p
(
x0:t|y1:t

)
, is derived and shown in Equation 2.6

[11, p. 6].

p
(
x0:t+1|y1:t+1

)
= p

(
x0:t|y1:t

) p
(
yt+1|xt+1

)
p (xt+1|xt)

p
(
yt+1|y1:t

) (2.6)

The filtering distribution can be calculated in a two step recursion process: the prediction

and update, as seen in Equation 2.7 and 2.8 [11, p. 6].

Prediction: p
(
xt|y1:t−1

)
=

∫
p (xt|xt−1) p

(
xt−1|y1:t−1

)
dxt−1 (2.7)

Update: p
(
xt|y1:t

)
=

p
(
yt|xt

)
p
(
xt|y1:t−1

)∫
p
(
yt|y

)
p
(
xt|y1:t−1

)
dxt

(2.8)

A prior PDF, or the prediction as seen in Equation 2.7, for the state xk is obtained using

the Chapman-Kolmogorov equation based on the measurements up to t − 1 [21, p. 531].

The state is first predicted with the state propagation belief p (xt|xt−1) using the model

f . Then this prediction is corrected by the measurement likelihood p
(
xt−1|y1:t−1

)
. The

update follows Bayes’ Theorem to calculate the posterior PDF for state xt, accounting for

measurements up to time step t, y1:t. These expressions however, are deceptively simple.

In reality, one cannot typically calculate the normalizing constant, p(yt), and the marginals

of the posterior, p(xt|yt), since they require the evaluation of complex high-dimension

integrals [11, p. 6]. Furthermore, the Bayes Filter scales poorly in reality due to the

large state space needed for multidimensional state vectors. Multidimensional integrals are

needed to calculate the prior probability of each point in the state space. These integrals also

grow and become incalculable as the state space grows. Additionally, the state space must

be discretized or certain limitations must be placed on the model for computer computation.

9

Much research has been devoted to developing approximations for these distributions. The

subsequent sections discuss some of the common filters used. Each of the following filters

attempts to approximate the posterior PDF

2.4.3 Kalman Filter.

The Kalman filter is a popular type of Bayes filter with several restrictions to solve the

problem of state estimation encountered in the Bayes Filter [11] [20]:

• g and h must be linear functions

• w and v must be uncorrelated, additive Gaussian white noise, with zero mean and

known variance

The Kalman filter is unsuitable to model a target moving in three dimensional space with

changing velocity and acceleration. A model with changing velocity and acceleration is

highly likely to be non-linear and the Kalman filter requires linear models. However, the

Kalman filter serves as a useful comparison to the particle filter and a second order Kalman

filter is used as a comparison within Chapters 4 and 5. The Kalman filter is broken into two

steps, the prediction and update, like the Bayes filter it emulates.

2.4.3.1 Kalman Filter Prediction Step.

The prediction step consists of a prediction of the states, x̃t, and a prediction of the

error covariance matrix, P̃t, which is an estimate of how accurate the state estimate is.

Additional parameters are the state transition model matrix, A, the control-input model, B,

the control vector, uk, and the system noise covariance matrix, Q. Equation 2.9 and 2.10

describe the prediction step [4, p. 411-470] [7, p. 231-279].

x̃t = Ax̃t−1 + But (2.9)

P̃t = APt−1A> + Q (2.10)

10

2.4.3.2 Kalman Filter Update Step.

The update step occurs once measurements are received by the filter. The update

step calculates the Kalman gain, Kt, which is a measure of the relative certainty of the

state estimate and measurements at each time step. The predicted states updated with the

Kalman gain the measurements. The final update is an update of the error covariance matrix

using the Kalman gain. The measurements used are defined by the measurement model, C;

some corresponding states may be observable and some may be hidden (no measurements

exist for them). Equation 2.11, 2.12, and 2.13 describe the update process [4, p. 411-470]

[7, p. 231-279].

Kt = P̃tC>
(
CP̃tC> + R

)−1
(2.11)

xt = x̃ + Kt
(
yt − Cx̃t

)
(2.12)

Pt = (I −KtC) P̃t (2.13)

Two key weaknesses of the Kalman filter that are made clear are the inability to change the

system and measurement noise covariance matrices, Q and R, and the inability to change

its dynamics (A. For a second-order Kalman filter, the control law defines the acceleration

values; if the target acceleration is not constant, the Kalman filter will begin to lag. A vision

tracking system possesses a significant problem since the PTZ cameras may no longer move

fast enough to capture the target if the filter is used to control the cameras.

2.4.4 Extended Kalman Filter.

To combat the limitations of the Kalman filter, namely its requirement for linear

functions, the Extended Kalman Filter (EKF) was developed at NASA Ames [19] [22]. The

EKF approaches the linear problem by linearizing a process before estimating it similarly

to a Kalman filter. The EKF calculates the Jacobian of f and h around the estimated state,

thus producing a trajectory of the model function centered around the state in question

[20]. Unfortunately it can still fail to accurately represent the model unless a number of

specific parameters are applied rending the filter unsuitable for situations requiring long

11

sequences or sudden changes in the state of the target [11, p. 5] [6, p. 3]. Furthermore,

if the initial estimate is incorrect, the filter may quickly diverge due to its linearization

around the estimate. Such a condition is unsuitable for tracking since initial estimates of

the target’s position and velocities are likely to be inaccurate. The original purpose of the

EKF was to predict navigation properties for orbital flybys. The creators assumed that the

spacecraft would not deviate far or quickly from its intended path and thus the process

could be linearized around the estimate [19, p. 614-615].

2.5 Particle Filter

The origins of the particle filter, also known as Sequential Monte Carlo (SMC)

methods, actually predate the Kalman filter by several years. The fundamental basis of

the particle filter was established by Hammersley in 1954, wherefore he argued that SMC

methods could be used to estimate the posterior PDF of the state-space by using Bayesian

recursion equations [14]. However, it was not until 1993 that Gordon et al. demonstrated

that SMC methods are suitable for tracking or other applications that previously relied on

Kalman filters or their variants [13]. Particle filters were also not practical until sufficient

computer power was available to run the filter in real time. The significant benefit of the

particle filter is that no restrictions are placed on ft or ht, or on the distributions of the system

or measurement noise [13, p. 108-109]. Furthermore, the particle filter is not dependent

on knowledge of prior states, only the present state. This aspect is discussed further in

Section 2.5.1. The prime difference between the particle filter and Bayes’ or Grid Filters

is that although both seek to determine the PDF, the particle filter does so discretely using

a set of random samples, or particles, instead of as a function over the state space. As the

number of particles increases, they provide a more accurate representation of the PDF.

2.5.1 Goal of the Particle Filter.

The goal of a particle filter is to estimate the posterior PDF of the state variables

given the measurements. However, as discussed in Section 2.4.2, determining the actual

12

continuous PDF is typically impossible, and if not impossible, computationally expensive,

slow, and prone to noise. Rather than determine the posterior PDF, the particle filter

estimates the PDF discretely by generating a Discrete Probability Distribution (DPD).

There are two elements to the DPD: a probability distribution and a Probability Mass

Function (PMF). The probability distribution is a sample, x(n)
t , at time-step t of n = 1, ...,N

samples drawn from the proposal distribution, N being the total number of samples drawn.

These samples are also known as the particles. The proposal distribution is a DPD

that estimates the desired posterior PDF and may also be referred to as the importance

sampling distribution, the importance function, or the importance density, depending on

the literature source, and is discussed further in Section 2.5.3. The PMF is referred to as

the importance weights. Conceptually, the probability distribution is the spread of particles

within the state-space before the weights are assigned. The importance weights assign

the probabilities to this distribution. The weights represent the likelihood of a particle

containing the truth states. Figure 2.1 illustrates the two elements of the DPD. Several

Figure 2.1: Visual Depiction of the Discrete Probability Distribution

assumptions regarding the model must be made before using the particle filter [11, p. 5].

• The state process, xt is a first order Markov process that can be modeled as:

xt|xt−1 ∼ pxt |xt−1(x|xt−1)

13

with an initial DPD of p(x0). A Markov process is a process that satisfies the Markov

property. A process satisfies the Markov property if predictions for future states can

be made based only on present states just as well as if all previous states were known.

• Measurements yt are conditionally independent provided that xt is known; that is,

each measurement yt is only dependent on its corresponding state xt

yt|xt ∼ px|y(y|xt)

A visual illustration of the state-space is seen in Figure 2.2.

Figure 2.2: The State-Space

Section 2.5.2 through 2.5.4 detail the development of the elements used by the particle

filter. The actual particle filter process is detailed in Section 2.5.5.

2.5.2 Monte Carlo Methods.

As mentioned in Section 2.5, the particle filter is based on Monte Carlo (MC) methods.

MC methods seek to address the problems encountered with Bayes’s Filter, detailed in

Section 2.4.2. MC methods approximate the integrals present in Equation 2.6, 2.7, and

2.8 [11, p. 6]. However, MC methods usually cannot sample from the the posterior PDF

p
(
x0:t|y1:t

)
at any time t [11, p. 8]. Thus, alternate methods were developed to address this

issue.

14

2.5.3 Importance Sampling.

Importance Sampling (IS) is a technique to estimate the properties of a specific

PDF using samples generated from a different PDF, assuming these PDFs are directly

proportional to each other. Suppose p(x) ∝ π(x), where p(x) is a PDF from which it

is difficult or impossible to draw samples from, but π(x) may be easily sampled from.

Additionally, p(x) may only be evaluated up to proportionality. Let these samples be

defined as xn sampled from p(x), n = 1, ...,N and generated from π(x), the proposal

distribution. These samples also have weights associated with them, the importance

weights, that allow p(x) to be characterized. Equation 2.14 and 2.15 define the weighted

approximation of p(x) and the importance weights, where δ is the Dirac delta function [2,

p. 178].

p(x) =

N∑
n=1

ωnδ (x − xn) (2.14)

ωn ∝
p(x)
π(x)

(2.15)

Applying this to the research, the desired posterior DPD is defined by Equation 2.16, while

the importance weights for the samples, xn
0:t, are defined by Equation 2.17[2, p. 178].

p
(
x0:t|y1:t

)
=

N∑
n=1

ω(n)
t δ

(
x0:t − x(n)

0:t

)
(2.16)

ω(n)
t ∝

p
(
x(n)

0:t |y1:t

)
π
(
x(n)

0:t |y1:t

) (2.17)

However, a key concern with IS is that it requires all measurements y1:t before estimating

p
(
x0:t|y1:t

)
. Thus, for each new measurement that becomes available, yt+1, the importance

weights must be recalculated over the entire state sequence. This aspect renders IS

inadequate for recursive estimation. Naturally, the computational requirements and

complexity increase with time, either resulting in a lagging filter or inaccurate results [11,

p. 9].

15

2.5.4 Sequential Importance Sampling.

Sequential Importance Sampling (SIS) solves the concerns of IS by modifying IS

so that an estimate of p
(
x0:t|y1:t

)
may be determined without modifying the previous

state sequence
{
x(n)

0:t−1; n = 1, ...,N
}
. The proposal distribution is factorized according to

Equation 2.18[11, p. 9].

π
(
x0:t|y1:t

)
= π

(
x0:t−1|y1:t−1

)
π
(
xt|x0:t−1, y1:t

)
(2.18)

Iterating Equation 2.18 results in the expression seen in Equation 2.19[11, p.9].

π
(
x0:t|y1:t

)
= π (x0)

t∏
k=1

π
(
xt|x0:t−1, y1:t

)
(2.19)

This importance function allows the weights to now be evaluated recursively in time, as

demonstrated in Equation 2.20[11, p. 9] [2, p. 178].

ω̂(n)
t ∝ ω̂

(n)
t−1

p
(
yt|x

(n)
t

)
p
(
yt|x

(n)
t−1

)
π
(
x(n)

t |x
(n)
0:t−1, y1:t

) (2.20)

This process of SIS is simplified further by using the transition prior DPD, p (x0:t), as the

proposal distribution, shown in Equation 2.21[11, p.9].

π
(
x0:t|y1:t

)
∝ p (x0:t) = p (x0)

t∏
i=1

p (xi|xi−1) (2.21)

By using the transition prior DPD, only xi
t must be stored, both the path xi

0:t−1 and history

of measurements, y1:t−1 may be discarded. When the filtering distribution, p
(
xt|y1:t

)
is

the posterior PDF of interest, the proposal distribution only depends on xt−1 and yt. The

filtering distribution and importance weights may be approximated using Equation 2.22[2,

p. 178] and 2.23[11, p. 10].

p
(
xt|y1:t

)
≈

N∑
n=1

ωn
t δ

(
xt − xn

t
)

(2.22)

ω(n)
t ∝ w(n)

t−1 p
(
yt|x

(n)
t

)
(2.23)

16

One problem encountered by SIS is that as t increases, the distribution of importance

weights becomes skewed as preference is given to higher weights. Eventually, one one

particle has a non-zero importance weight. Thus, the SIS fails to accurately represent the

posterior PDFs of interest, namely the filtering distribution. An additional re-sampling step,

known as bootstrapping, is used to help mitigate this collapse[11, p.10].

2.5.5 Particle Filter Process.

The particle filter evaluated for this research is known as a Bootstrap Particle Filter

(BPF) [2, p. 178]. The process it uses is based on SIS, however it adds an additional step

to address the skewed weights present in the SIS. The basic concept of the BPF is to

eliminate particles with low importance weights and increase the number of particles with

high importance weights [13]. The BPF can be broken into three basic steps, each with

several sub-steps. The three steps are: initialization, importance sampling, and selection

[11, p. 11]. Figure 2.3 provides a visual depiction of the BPF process in Section 2.5.5.5.

The steps within Figure 2.3 are referenced within the three steps.

2.5.5.1 Initialization.

Before the BPF can begin filtering measurements, an initial DPD must be generated.

This initial DPD is based on the initial conditions of the state-space model in Equation 2.2.

The particles are distributed based on state noise, w or system noise variance, σ2 (x). The

initialization occurs at timestep t = 0.

• For n = 1, ...,Ns, sample x(n)
0 p (x0) and set t = 1 [11, p. 11]

2.5.5.2 Importance Sampling.

The importance sampling is where the proposal distribution is sampled and is Step 1

on Figure 2.3. As mentioned in Section 2.5.4, the proposal distribution is the prior DPD,

which is the probability distribution that expressed uncertainty about the states before

measurements are taken into account. It attributes a degree of uncertainty, rather than

17

randomness, to the uncertain states. This uncertainty is expressed via the system noise

variance. x̃ represent the unweighted predicted states or proposal distribution.

• For n = 1, ...,N, sample x̃(n)
t from p

(
xt|x(n)

t−1

)
and set x̃(n)

0:t =
(
x(n)

0:t−1, x̃
(n)
t

)
[11, p. 11]

The importance sampling step also uses the system noise variance to add variety to the

proposal distribution, reflected in Step 4 on Figure 2.3. Variety must be added after the re-

sampling step since re-sampling creates multiple samples with the same states, in essence,

reducing the number of unique states. This aspect is further discussed in Section 2.5.5.3

and 2.5.5.4. Step 1 on Figure 2.3 assumes that variety was introduced previously. The

importance weights are then sampled. These importance weights are approximations of

the relative posterior probabilities of the particles. In other-words, each weight represents

the likelihood that its corresponding particle (containing the estimated states) is correct

compared to the true states.

• For n = 1, ...,N, evaluate the importance weights [11, p. 11]

ω(n)
t = p

(
yt|x̃

(n)
t

)
(2.24)

The importance weights are then normalized, for n = 1, ...,N [11, p. 11].

ω̂(n)
t =

ω(n)
t∑N

n=1 ω
(n)
t

(2.25)

2.5.5.3 Selection.

The BPF resamples the particles based on their weights using a weighted roulette

selection [11, p. 10] and is Step 3 on Figure 2.3. Thus, particles with greater weights are

apt to be sampled more frequently. Different re-sampling algorithms have been developed,

though this research relies on the algorithm developed by Gordon et al., which is one of

the most popular, and is described in Section 2.5.5.4 [13] [11, p. 10]. Regardless of the

resampling algorithm chosen, all follow a similar method.

18

• Resample with replacement N particles
(
x(n)

0:t ; i = 1, ...,N
)

from the set
(
x̃(n)

0:t ; n = 1, ...,N
)

according to the importance weights [11, p. 11]

• Set t = t + 1 and proceed to the importance sampling step

As for the actual estimated states, xt, these can be determined by a variety of statistical

methods that analyze the posterior DPD, p
(
xt|y1:t

)
. For this research, a mean was taken of

the estimated states.

2.5.5.4 Re-sampling Algorithm.

After the importance weights are normalized, a random number, ru, is sampled

from a standard uniform distribution between 0 and 1, which matches the range of

normalized importance weights. The normalized weights are summed cumulatively until

their cumulative sum is greater than ru. The index, i, of the last normalized importance

weight summed is used to retrieve the predicted state vector corresponding to that weight.

This state vector becomes the first discrete point in the posterior DPD. This process is

repeated, using a new ru each time, for the total number of particles, N, at which point the

posterior DPD is created. Equation 2.26 describes these steps, where t is the time-step and

n is the particle number.

ω̄t[n] =
∑n

m=1 ŵn

i = argmaxi=1,Nω̄[i] : ω̄[i] > ru

x(n)
t = x̃(i)

t

(2.26)

As a consequence of the re-sampling step, multiple particle samples are assigned to the

same state vector, since the objective of the re-sampling step is to eliminate particles

with low importance weights and multiply particles with high importance weights [11,

p. 10]. Without introducing variety, the particle filter would begin to suffer from weight

degeneration and eventually succumb to weight collapse. Weight degeneration and weight

collapse are discussed further in Section 2.5.6. To help prevent weight degeneration, the

19

sampling step assigns variety to the DPD created by the re-sampling step, seen in Step 4 on

Figure 2.3.

2.5.5.5 Visual Depiction of Particle Filter Process.

Figure 2.3 provides a visual illustration of the BPF [11, 12].

Figure 2.3: Bootstrap Particle Filter Process [11, 12]

In Figure 2.3, x̃(n)
t represents the population of samples, and N−1, the weights or

PMF. The BPF starts at a time-step t with an unweighted measure or importance sampling

distribution
{
x̃(n)

t ,N−1
}

which is an approximation of p
(
xt|y1:t−1

)
. The importance sampling

distribution already incorporates variety. Importance weights are calculated using the

20

measurements at time t, which is an approximation of p
(
xt|y1:t

)
, the posterior PDF of

interest from which statistical metrics are computed to generate an estimate of the states.

The re-sampling step then selects on the fittest or most heavily weighted particles to create

the importance sampling distribution
{
x̃(n)

t ,N−1
}
. Note, this is still an approximation of

p
(
xt|y1:t

)
, the particles are simply reassigned to reflect the current weights. Variety is

introduced with the state update at time-step t + 1. Customarily, and for this research,

the variety is provided using the system noise variances. These variances are tailored to

the particle filters used in this research and discussed in Chapter 4 and 5. This variety

results in the new importance sampling distribution,
{
x̃(n)

t ,N−1
}
, which is an approximation

of p
(
xt|y1:t+1

)
.

2.5.6 Limitations of the Particle Filter.

Beyond the increased computational needs, particle filters do have several limitations.

One of the most common limitations is weight disparity which may lead to weight collapse

[11, p.10]. Weight degeneration, occurs when all but a few of the importance weights

are close to zero. When most of the importance weights are close to zero, the particle

filter cannot produce a good posterior density since only a few wights will be sampled

repeatedly subsequently skewing the mean. This degeneration continues to worsen as the

mean becomes more inaccurate with each time step until weight collapse occurs once all but

one of the importance weights are close to zero. Most computer algorithms crash once the

sole particle not close to zero approaches zero likehood (due to predicted measurements

drifting farther from actual measurements) and the algorithm attempts to normalize the

weight(s) by dividing by zero. Various methods can mitigate weight collapse, the most

common being a re-sampling step whenever the number of effective particles drops below

a certain threshold. The number of effective particles can not be directly determined, but

may be estimated using Equation 2.27 [2, p.179].

ˆNe f f =
1∑N

n=1(ω̂(n)
t)2

(2.27)

21

where ŵ(n)
t is the normalized weight. ˆNe f f is less than N and a small Ne f f indicates

severe degradation. More sophisticated particle filters, such as the Sequential Importance

Resampling (SIR) filter, Auxiliary Sampling Importance Re-sampling (ASIR) filter, and

Regularized Particle Filter (RPF), also seek to eliminate weight collapse through a variety

of methods, though for the purposes of this research, these filters were not investigated nor

implemented [2, p. 180-183]. Particle filters also depend upon the model of the system

in question. Although the particle filter can compensate for noisy measurements and non-

linear systems, if the model is sufficiently poor, the filter is unable to perform adequately.

2.5.7 Uses of the Particle Filter.

Due in part to its newness, the particle filter has not been widely implemented and is

still in a development stage. Thus, most of the users of the particle filter are not commercial

applications, but experimental research. The particle filter and its variants have been used

for facial recognition and tracking under varying light and background situations [16].

Additional research at the University of Florence resulted in a first order tracking particle

filter for targets moving in two dimensions [6]. Research sponsored by the U.S. Army

Research Laboratory and U.K. Ministry of Defense also explored using Bayesian filtering

to track multiple targets via proximity sensors [15]. Although much of the research utilizing

the particle filter is concerned with target tracking, the particle filter may be applied to a

variety of situations with unknown states. One such area is determining the remaining

useful life prediction of lithium-ion batteries [17].

2.6 Conclusion

Although the particle filter has seen limited application for tracking, discussed in

Section 2.5.7, no research indicated any attempt to use the particle filter to track a target

within 3-D space based on the position and movement of the target’s centroid using only

position measurements. Additionally, no research indicated any attempt to use the particle

filter to estimate depth without actual depth measurements.

22

III. Methodology: Prototype Filters

3.1 Introduction

This chapter details the prototype particle filters developed to test and evaluate the

potential to use particle filters to determine the hidden states of a moving target using

camera measurements.

3.2 System Design Approach

Although the concept of the particle filter predates more mature filters such as the

Kalman filter, development of the particle filter lags behind other filters. Thus, the first stage

is to develop a prototype particle filter within the MATLAB environment and determine

if hidden states can successfully be determined based on limited measurements. Once

verified, particle filters for both a dual camera system and single camera system will be

developed. Included in this stage is the development of a target model to both generate

simulated measurements for the particle filter and to be used within the particle filter to

generate particle distributions. The target model will differ slightly for each camera setup,

dual and single respectively. Two prototype particle filters, A and B, were developed to

evaluate various aspects of the particle filter.

3.3 Prototype Particle Filter A: Single Variable Tracking

The first filter developed, PPF-A, was based on the filter created by Godon et al.

[13]. The primary purpose of PPF-A was to serve as a software validation of the particle

filter within the MATLAB environment. PPF-A will also serve as the framework on

which all subsequent particle filters will be developed. PPF-A uses the same state, xt, and

measurement, yt, models as the filter created by Gordon et al. The same noise covariances

in the state, wk, and measurement, vt were also used. Equation 3.1 and 3.2 describe the

23

model used.

xt = 0.5xt−1 +
25xt−1

1 + x2
t−1

+ 8 cos(1.2(t − 1)) + wt (3.1)

yt =
x2

t

20
+ vt (3.2)

The variables wt and vt are zero-mean Gaussian white noise with state and measurement

variances of 10 and 1 respectively. Additionally, the number of particles, N, used was 500

and the initial state was x0 = 0.1. An example run is seen in Figure 3.1.

Figure 3.1: Prototype Particle Filter A: Non-linear Function Demonstration

Figure 3.1 demonstrates the particle filter’s ability to track a non-linear target function

given noisy measurements. The ability to track non-linear target is a key difference between

the particle filter and other filters such as the Kalman; the particle filter accepts higher

order estimates of perfect order. Perfect order estimates are estimates that are not truncated

or linearized as they must be in the Kalman filter. Due to the highly non-linear nature

of the chosen target function, seen in Equation 3.1, a Kalman filter was not used as a

24

comparison, however future functions within Chapter 3, 4, and 5 will use the Kalman filter

as a comparison to the particle filter.

3.4 Prototype Particle Filter B: Multi-Variable Tracking and Hidden State Determi-

nation

PPF-B evaluated the particle filter’s tracking ability with the presence of hidden states;

that is, states that can only be predicted within the model since they do not correspond

directly to a measurement.

3.4.1 Target Model.

The target model used contained both x and y positions as well as a velocity magnitude

V and a velocity heading angle θ. Both positions vary with velocity, velocity changes with

a constant acceleration, a, and the heading θ̇ is held constant. Additionally, system noise is

introduced into the model for both a and θ̇ via σ2(xa) and σ2(xθ̇), the system noise variances

for acceleration and heading velocity respectively. When system noise is introduced, a and

θ̇ are no longer constant. The variance for each state, σ2(x), provides a measure of the

spread of that state’s density function. Often, and for this research, the standard deviation,

σ(x) is used in-place of the variance to denote the spread of the density function. The

addition of system noise simulates the presence of modeled, higher-order functions, such

as changes in acceleration. System noise is not added to the target positions u and v since

the target positions are derived from V and θ and ultimately the acceleration values, a and

θ̇. rn is a normally distributed random number that is used to generate the system noise. It

25

changes each time it appears. Equation 3.3 through 3.8 describe the target model.

uT,t = uT,t−1 + VT,t−1 · sin(θT,t−1) · ∆t (3.3)

vT,t = vT,t−1 + VT,t−1 · cos(θT,t−1) · ∆t (3.4)

VT,t = VT,t−1 + aT,t−1 · ∆t (3.5)

θT,t = θT,t−1 + θ̇T,t−1 · ∆t (3.6)

aT,t = aT,t−1 +

√
σ2(xT,a) · rn (3.7)

θ̇T,t = θ̇T,t−1 +

√
σ2(xT,θ) · rn (3.8)

3.4.2 Measurements.

The measurements passed to the filter are the positions u and v. Measurement noise

is added to simulate noisy measurements the filter would receive in reality. This noise

is represented by the measurement noise variances, σ2(mT,u) and σ2(mT,v), for uT and vT

respectively. The equations representing these measurements are:

um,t = uT,t +

√
σ2(mT,u) · rn (3.9)

vm,t = vT,t +

√
σ2(mT,v) · rn (3.10)

3.4.3 Particle Filter Model.

The PPF-B model used mimics the target model, however it does not contain a specific

acceleration variable since acceleration is unknown and the motivation is to determine

velocity and heading states. Rather, any changes in acceleration are treated as system

noise. Like the target model, the filter contains its own system noise variances, σ2(x fV)

and σ2(x fθ), for V and θ, to simulate those present in the model. Again, these system noise

variances represent the target acceleration values. Ideally these will match the actual noise

variances of the target model. These variances are also what the filter uses to generate its

26

distribution of particles.

u f ,t = u f ,t−1 + V f ,t−1 · sin(θ f ,t−1) · ∆t (3.11)

v f ,t = v f ,t−1 + V f ,t−1 · cos(θ f ,t−1) · ∆t (3.12)

V f ,t = V f ,t−1 +

√
σ2(x f ,V) · rn (3.13)

θ f ,t = θ f ,t−1 +

√
σ2(x f ,θ) · rn (3.14)

The PPF-B measurements, u f m and v f m, are set equal to the target measurements um and vm.

These measurements, y f are compared to the target measurements, yT . Importance weights,

ω, are generated from this comparison for each particle, n, as detailed in Equation 3.15.

These weights are based on the probability of the particle measurement being correct

given the actual measurement while accounting for measurement noise, represented by the

variances σ2(m f ,u) and σ2(m f ,v). Ideally, these filter measurement noise variances, σ2(m f),

will match the target measurement noise variances, σ2(mT). The smaller the measurement

covariances are, the more the filter trusts the measurements and vice-versa. A normal or

Gaussian distribution was used to generate the weights, however any type of distribution

may be used to model the target noise, so long as the same distribution is used within

the filter. Both measurements, um and vm were weighted equally, as defined by the weight

matrix, Ω f in Equation 3.16 [13]. By setting the weights equal, this means the filter assumes

both the measurements, corresponding to each weight, are of equal importance. Weights

are typically set at at lower values if their corresponding measurements were less accurate

and the user does not want these measurements to adversely affect the state estimation.

Weights are typically set at higher values if their corresponding measurements are of greater

interest and the user desires the filter pay more attention to these measurements and their

corresponding states at the exclusion of others.

ω(n)
t =

1√
2πσ(m f)

· EXP

−((y f ,t − y(L)
T,t) ·Ω f · (y f ,t − y(n)

T,t)
>)

2σ(m f)

 (3.15)

27

Ω f =

Ω(u) 0

0 Ω(v)

 (3.16)

3.4.4 Kalman Filter Model.

Two Kalman filters serve as comparisons. Prototype Kalman Filter A (PKF-A) uses

the same initial conditions as the target and the same acceleration values as the target, which

are reflected in the control vector u. Prototype Kalman Filter B (PKF-B) uses the same

initial conditions as the PPF-B and slightly different acceleration values, to illustrate the

lag that occurs when the control vector is incorrect. Since the Kalman filter must use linear

functions, the non-linear functions of velocity and heading are derived from the component

velocities of u and v, u̇ and v̇ respectively, as seen in Equation 3.17 and 3.18.

u̇t = V · cos (θt) (3.17)

v̇t = V · sin (θt) (3.18)

Equation 3.17 and 3.18 are also applied to the control law and covariance matrices when

applicable. In order to provide a comparison to the target and PPF-B, u̇ and v̇ values are

transformed to their respective V and θ values using Equation 3.19 and 3.20.

Vt =

√
u̇2

t + v̇2
t (3.19)

θt = arctan
(
u̇t

v̇t

)
(3.20)

Equation 3.21 through 3.26 describe the the state transition model matrix, A, the

control-input model, B, the control vector, uk, the system noise covariance matrix,

Q, the measurement model, C, and the measurement noise covariance matrix, R.

A =



1 0 ∆t 0

0 1 0 ∆t

0 0 1 0

0 0 0 1


(3.21) B =



∆t2
2 0

0 ∆t2
2

∆t 0

0 ∆t


(3.22) uk =

üv̈
 (3.23)

28

Q =



σ (xu) 0 0 0

0 σ (xv) 0 0

0 0 σ (xV) 0

0 0 0 σ (xθ)


(3.24)

C =

1 0 0 0

0 1 0 0

 (3.25) R =

σ (yV) 0

0 σ (yθ)

 (3.26)

3.4.5 Simulation Scenarios.

Three simulations were conducted, changing various parameters of the model and

filter to validate the claim that particle filter could determine hidden states. Initial

conditions for the target, PKF-A, PKF-B, and PPF-B are provided in Table 3.1.

Table 3.1: PPF-B Scenario: Initial Conditions

States u v V θ a θ̇

Target 10 10 1 30 1 2

PKF-A 10 10 1 30 1 2

PKF-B 0 0 0 0 0 0

PPF-B 0 0 0 0 N/A N/A

Additional parameters used throughout the three scenarios are provided in Table 3.2.

29

Table 3.2: PPF-B Scenario: Parameters

Filter PKF-A PKF-B PPF-B

Number of Simulations 100 100 100

Run Time 100 100 100

Time Step 1 1 1

Number of Particles N/A N/A 500

3.4.5.1 Scenario 1: No System or Measurement Noise.

The first scenario contained no system nor measurement noises in the target model.

Thus, the measurements observed were completely accurate. Target system variances,

σ2(xT,V) and σ2(xT,θ) were both 0 as measurement noise variances, σ2(m f ,u) and σ2(m f ,v)

respectively. Kalman filter system covariance values were set to 0.1 and not 0 for both

V and θ in order to to propagate the error covariance prediction and the Kalman gain

calculation. The measurement covariance values were set to 0 for both measurements u and

v. Particle filter system noise covariances were not 0 to match the target, since the filter still

must create a distribution of particles, but they were kept low to reflect the lack of system

noise with σ2(x f ,V) and σ2(x f ,θ) both equal to 1. The measurement noise variance used by

the filter, σ2(m f), was equal to 0.1 reflecting both the lack of target measurement noise, but

also the uncertainty introduced into the filter from the filter system noise covariances. The

mean of the difference between each filter value and the target value for all the simulation

runs at each time step are calculated and the shown in Figure 3.2. Rather than separate

u and v position variables, the Euclidean distance is used instead on the basis that both

positions should be accurate. Additionally, the results from a single simulation are provided

in Figure 3.3.

30

Figure 3.2: PPF-B: Mean Error for No System or Measurement Noise

31

Figure 3.3: PPF-B: Single Run for No System or Measurement Noise

32

As seen in Figure 3.2 and 3.3, the filter is able to determine the velocity and heading

once the filter locks onto the u and v position. Initially there is an overshoot and undershoot

of the velocity and heading to reflect the increase in velocity needed to match the simulated

measurements to actual measurements since the filter lags behind the target due to differing

initial conditions. Scenario 1 does not evaluate the performance of the filter, but functions

as a diagnostic on the filter’s functionality. As discussed, the filter system and measurement

noise covariances cannot be set to zero, nor would they ever since a system with zero

noise does not need a filter who’s purpose is to remove noise. Unsurprisingly, given the

lack of noise and relative linearity of the system, both Kalman filters performed better

than PPF-B for position and velocity estimation. However, neither Kalman filter returned

accurate heading estimates. This is likely due to the errors in the velocity estimation that

are compounded when predicted in heading, as seen in Equation 3.20. Also as expected,

velocity errors for PKF-B were greater than PKF-A due to the erroneous control law.

Table 3.3 provides the mean error values for each filter for each variable over the last

50 time steps. The last 50 were chosen in order to allow PKF-B and PPF-B to track to the

target since neither began with the target’s initial conditions.

Table 3.3: Mean Errors for Last 50 Time Steps without System or Measurement Noise

Metrics u v V θ

PKF-A 0 0 1.4337 49.4796

PKF-B 0 0 1.8665 49.796

PPF-B 1.6738 3.1969 3.1448 4.3499

33

3.4.5.2 Scenario 2: Measurement Noise, No System Noise.

. Scenario 2 contained measurement noise but no system noise. The presence of

measurement noise increases the uncertainty imparted on the filter from the measurements.

The variances for system noise are provided in Table 3.4.

Table 3.4: PPF-B Scenario 2: Variances

Variance σ (yu)2 σ (yv)2

PKF-A 10 10

PKF-B 10 10

PPF-B 10 10

As with Scenario 1, the mean errors were calculated and can be seen in Figure 3.4.

The results from a single simulation run are provided in Figure 3.5.

34

Figure 3.4: PPF-B: Mean Error for No System Noise

35

Figure 3.5: PPF-B: Single Run for No System Noise

36

As seen in Figure 3.5, despite the presence of the system noise, the filter is still able

to track the u and v positions of the target as well as provide reasonable estimates of the

velocity and heading despite the noticeable non-linearity of the target variables. However,

performance for both PKF-A and PKF-B worsens compared to Scenario 1. Although the

position estimation is still reasonable for both, estimates of velocity and heading worsen

due to their non-linearity. Furthermore, the errors within velocity and heading adversely

affect the position estimation. As with Scenario 1, the position estimation performance of

PKF-B is worse than the performance of PKF-A due to PKF-B’s erroneous control law.

The mean errors for the last 50 time steps are provided in Table 3.5.

Table 3.5: Mean Errors without System or Measurement Noise

Metrics u v V θ

PKF-A 9.0307 49.6103 14.2988 51.8838

PKF-B 20.2419 16.2025 11.2875 50.3598

PPF-B 4.2103 5.3242 2.9838 4.5664

3.4.5.3 Scenario 3: System Noise and Measurement Noise.

. Scenario 3 contained system noise and measurement noise in the target model. While

the filter seeks to track changes in the target due to system noise, the filter should not track

changes due to measurement noise, but instead filter measurement noise to determine and

track the actual states. Both system and measurement noises were identical in the target and

filter models. Table 3.6 contains the system and measurement variances used for Scenario

3.

37

Table 3.6: PPF-B Scenario 3: Variances

Variance σ (yu)2 σ (yv)2 σ (xV)2 σ (xθ)2

PKF-A 10 10 1 5

PKF-B 10 10 1 5

PPF-B 10 10 2 10

System variance values, σ (xV)2 and σ (xθ)2, for PKF-B were greater in order to

introduce additional variety due to the lack of an acceleration parameter for PKF-B. The

mean errors were calculated and can be seen in Figure 3.6. The results from a single

simulation run are provided in Figure 3.7. An important note is that since the system noise

directly affects the subsequent target state calculation, each simulation will be different.

38

Figure 3.6: PPF-B: Mean Error for System and Measurement Noise

39

Figure 3.7: PPF-B: Single Run for System and Measurement Noise

40

As seen in Figure 3.7, with the presence of measurement noise, all filter estimations

become less accurate. In particular, over time, PPF-B position estimates are worse than

those of PKF-A or PKF-B however PPF-B still returns notably better estimates of velocity

and heading. Furthermore, since acceleration values change, neither control law is accurate

and is particularly evident again for velocity and heading estimates. The differences for the

hidden states, velocity and heading, illustrate a key benefit of the particle filter; the particle

filter does not require knowledge or assumptions concerning acceleration. The overall

mean values for each filter are provided in Table 3.7.

Table 3.7: Mean Errors without System or Measurement Noise

Metrics u v V θ

PKF-A 8.4716 14.7124 18.4685 209.1750

PKF-B 7.6093 11.7084 7.8265 209.0449

PPF-B 15.0517 13.8954 3.3029 36.0236

3.4.5.4 Scenario 4: Weight Discrepancy and Collapse.

. Scenario 4 illustrates a weight collapse. Table 3.8 contains the measurement

covariances used to produce the weight collapse.

Table 3.8: PPF-B Scenario 2: Variances

Variance σ (yu)2 σ (yv)2

Target 1000 1000

PPF-B 10 10

By choosing measurement covariances for the target that are greater than those for the

filter ensures that some measurement points will lie outside the distribution used by the

41

filter. The filter will not generate the correct probability that the state is correct given

the measurement. The filter assumes the measurements are more accurate, and hence

representative of the target states, than they actually are. Although the filter will still use

the most heavily weighted and thus correct particle, the total importance weight summation

begins to approach zero. Eventually, none of the particles have significant weights resulting

in filter collapse as seen in Figure 3.8.

42

Figure 3.8: PPF-B: Weight Discrepancy and Collapse

43

Towards the end of the ’u Position’ subplot, PPF-B begins to diverge from the target.

This illustrates PPF-B’s inability to generate and sample particles from a distribution that

contains the target solution. Figure 3.9 shows the distribution of particles versus the

corresponding target state.

44

Figure 3.9: PPF-B: Iteration Prior to Weight Collapse

45

As seen in the first subplot, U vs V Position Particle Weight, the target state lies

well outside of the particle distribution. Naturally, PPF-B assigns the greatest weight the

closest particle, but the overall weight values are exceptionally small. The collapse occurs

on the subsequent iteration when the weights are indistinguishable from zero, meaning

PPF-B cannot select any particle. These collapses can be mitigated by increasing the filter’s

measurement noise covariance to equal or exceed the target measurement noise covariance.

If the filter’s measurement noise covariance exceeds that of the target, the filter can still

track the target assuming a sufficient number of particles. An increase in measurement

noise covariance results in an increase in particle distribution. A larger particle distribution

results in an increase in the number of particles with an importance weight than would

be justified by the actual target measurement noise. In essence, the filter keeps particles

that it should discard due to the inaccurate importance weights. Thus, in-order to decrease

computational costs, noise covariances should ideally be equal for both the target and filter.

46

IV. Methodology: Application Filters

4.1 Introduction

This chapter details the filter development philosophy as well as the methods used to

evaluate the performance of the particle filter.

4.2 System Design Approach

Proceeding forward based on positive results from the prototype filters discussed in

Chapter 2, the subsequent particle filters, EPF-A and EPF-B, attempt to track a target

moving non-linearly in 3-D space. Before developing the filters, the motion of the target

must be modeled in the three frames discussed in Secion 4.2.1: the global frame, the camera

frame, and the pixel frame. Additionally, a measurement model will supply simulated

camera measurements to the filters using the target model as a basis. EPF-A will be applied

to the camera frame and EPF-B will be applied to the pixel frame.

4.2.1 Coordinate Frames.

In order to relate measurement data from the cameras to the target’s position in 3-D

space, the data must be moved through a series of coordinate frame transformations. The

steps necessary to move from the global frame, which the target moves in, to the final pixel

frame that the camera uses to observe the target are determined with a series of coordinate

fame transformations. These transformations are necessary to both generate simulated

measurements and produce the particles by the particle filter. The relationship between

the target data and single camera is simpler than the relationship for two cameras. Both the

global and camera frames share the same origin simplifying the necessary transformations.

The three coordinate frames used are the global frame, the camera frame, and the pixel

frame. The first transformation is exclusive to the MATLAB environment due to a

difference between the default MATLAB coordinate frame and the preferred global frame

47

used by imaging systems. To differentiate between the default MATLAB global frame and

imaging global frame, the axis labels change using the following notation.

X1 → XG

Y1 → YG

Z1 → ZG

The default positive axis directions are X1 up, Y1 right, and Z1 into the page. The customary

positive axis directions for image processing are XG right, YG down, and ZG into the page.

Thus, a 90° rotation about the Z axis is performed, see Figure 4.1.

Figure 4.1: Global Transformation from MATLAB Default Orientation

The second transformation is from the global to the camera frame, that is, the frame

aligned with the camera. The axis labels change using the following notation.

XG → U1 → UC

YG → V1 → VC

ZG → W1 → WC

48

This is how one would perceive the global frame if rotating and panning with the camera.

The two angles necessary for the transformation are a pan, α, about the YG axis, and a tilt,

β, about the W1 axis, see Figure 4.2.

Figure 4.2: Transformation from Global to Camera Frame

These two transformations, from the global to the camera frame, can be described

using a Direction Cosine Matrix (DCM), see Equation 4.1. All the rotations detailed thus

far are about one of the three orthogonal dimensions, X1, Y1, and Z1.


cos(α − 90) 0 − sin(α − 90)

0 1 0

sin(α − 90) 0 cos(α − 90)




1 0 0

0 cos(β − 90) − sin(β − 90)

0 sin(β − 90) cos(β − 90)




cos(90) − sin(90) 0

sin(90) cos(90) 0

0 0 1


Y Rotation X Rotation Z Rotation

(4.1)

49

The final transformation is from the camera frame to the pixel frame, that is, the three

dimensional target location is projected onto two dimensions. This is accomplished by

dividing each UC and VC coordinate by the corresponding WC coordinate, see Equation 4.2.

[uP, vP] =
1

w2
[uC, vC] (4.2)

Figure 4.3 depicts the transformation from the camera to pixel frame.

Figure 4.3: Transformation from Camera to Pixel Frame

As seen in Figure 4.3, if an object is viewed without knowing any absolute

measurements, it is impossible to determine the size or depth of that object once it is

50

projected onto a two-dimensional image plane. This is the point at which depth information

is lost for a single camera, since wC cannot be redetermined from uP and vP alone.

4.2.2 Target Model.

Based upon reference frames in Section 4.2.1, a second order model of the target

was developed. The equations governing the motion of the target model are detailed in

Section 4.2.4. The target model generates the movements of a single point representing the

centroid of the target. The target is assumed to move within a three dimensional space, with

a position of xT , yT , and zT , and a velocity magnitude of VT defined in the three dimensional

space with the angles θT , tilt from the Y axis, and φT , pan in the X-Z plane, as shown in

Figure 4.4.

Figure 4.4: Target in Global Frame

The states that describe the position and motion of the target in the global frame are

provided in Table 4.1.

51

Table 4.1: Global Frame Target States

Parameter Target States

Position xT yT zT

Motion VT θT φT

Position Changes ∆xT ∆yT ∆zT

Motion Changes ∆VT ∆θT ∆φT

Rates of Position ẋT ẏT żT

Rates of Motion V̇T θ̇T φ̇T

4.2.3 Measurement Model.

Using the point generated by the target model as a basis, the measurement model

generates additional points around the target model that move in relation to the target

model, simulating a three-dimensional object moving in three-dimensional space. The

purpose of generating additional points is to simulate the noise that may be introduced when

the model attempts to determine the motion of the centroid based on these additional points.

Eight measurement points were generated, forming a cube around the target centroid as

shown in Figure 4.5.

52

Figure 4.5: Target Centroid and Measurement Points

4.2.4 Global Frame Equations.

The motion of the target in the global frame, and indeed all frames, is governed by the

changes in V and headings θ and φ. These variables define the position of the target in the

global frame using the states x, y, and z. Additionally, the motion variables are impacted by

their respective rates of change, V̇T , θ̇T , and φ̇T . The target model is a second-order discrete

time system, derived by evaluating the continuous system at a time ∆t and eliminating all

terms that greater than second-order. The knowledge of acceleration is what allows the

possibility of determining depth, discussed further in Section 4.2.7 and 4.4. The position

of the target is defined by Equation 4.3 through 4.5.

xT,t = xT,t−1 + ∆xT,t−1 (4.3)

yT,t = yT,t−1 + ∆yT,t−1 (4.4)

zT,t = zT,t−1 + ∆zT,t−1 (4.5)

∆xT , ∆yT , and ∆zT reflect the change in position with each time step. The changes

in position are determined by the changes in V and headings θ and φ and defined by

Equation 4.6 through 4.8.

53

∆xT,t = VT,t · sin(θT,t) · cos(φT,t) · ∆t

+V̇T,t · sin(θT,t) · cos(φT,t) ·
∆t2

2
+ ˙θT,t · VT,t · cos(θT,t) · cos(φT,t) ·

∆t2

2

−φ̇T,t · VT,t · sin(θT,t) · sin(φT,t) ·
∆t2

2
(4.6)

∆yT,t = VT,t · cos(θT,t) · ∆t + ˙VT,t · cos(θT,t) ·
∆t2

2
− ˙θT,t · VT,t · sin(θT,t) ·

∆t2

2
(4.7)

∆zT,t = V · sin(θT,t) · sin(φT,t) · ∆t

+V̇T,t · sin(θT,t) · sin(φT,t) ·
∆t2

2
+ ˙φT,t · VT,t · sin(θT,t) · cos(φT,t) ·

∆t2

2

+φ̇T,t · VT,t · sin(θT,t) · cos(φT,t) ·
∆t2

2
(4.8)

The velocity and headings at each time step are defined by Equation 4.9 through 4.11.

VT,t = VT,t−1 + ∆VT,t−1 (4.9)

θT,t = θT,t−1 + ∆θT,t−1 (4.10)

φk = φT,t−1 + ∆φT,t−1 (4.11)

The changes in velocity and heading from each time step are defined by Equation 4.12

through 4.14.

∆VT,t = V̇T,t · ∆t (4.12)

∆θT,t = θ̇T,t · ∆t (4.13)

∆θT,t = θ̇T,t · ∆t (4.14)

The model assumes that δVT , δθT , and δφT are constant since acceleration is held constant.

Thus, the changes in velocity and heading must be constant as well. This is reflected in

Equation 4.15 through 4.17 which define V̇ , θ̇, and φ̇.

54

V̇T,t = δVT,t−1∆t (4.15)

θ̇T,t = δθT,t−1∆t (4.16)

φ̇T,t = δφT,t−1∆t (4.17)

4.2.5 Camera Frame Equations.

As discussed earlier, the resulting states must be first be transformed to the camera

coordinate frame using the rotation matrices specified in Equation 4.1. Both the target

centroid and measurement points were transformed in this fashion. These transformations

are described by Equation 4.18 and 4.19.

R>DCM


xT

yT

zT

 =


uTc

vTc

wTc

 (4.18)

R>DCM


ẋT

ẏT

żT

 =


u̇Tc

v̇Tc

ẇTc

 (4.19)

4.2.6 Pixel Frame Equations.

The final transformation is to the pixel coordinate frame so that the filter predicted

measurements may be compared to actual measurements. The transformation results in

a conversion from the three dimensional camera coordinate frame to the two dimensional

pixel frame that is representative of what the camera would actually see. The resulting

states are illustrated by Equation 4.20.

uTc,wTc → uT p

vTc,wTc → vT p

u̇Tc → uT p

v̇Tc → vT p

ẇTc → sT

(4.20)

55

The measurement states for the target, uT p, vT p, sT , u̇T p, and v̇T p are defined by

Equation 4.21 through 4.25, where f l is the focal length of the camera).

uT p =
uTc

wTc
· f l (4.21)

vT p =
vTc

wTc
· f l (4.22)

sT =
1
2
·

(
−uTc · ẇTc

w2
Tc

+
−vTc · ẇTc

w2
Tc

)
(4.23)

u̇T p =
u̇Tc

wTc
· f l (4.24)

v̇T p =
v̇Tc

wTc
· f l (4.25)

The focal length f l adds a dimension to an otherwise unitless measurement, the pixel. The

focal length also determines the camera’s angle of view. Longer focal lengths correspond

in smaller view angles while shorter focal lengths correspond with larger view angles, as

seen in Figure 4.6 [9]. Additional properties are provided in Table 4.2.

56

Figure 4.6: Relationship Between Focal Length and View Angle

Table 4.2: Image Properties

Focal Length View Angle Area Captured Apparent Size

Short Wide Large Small

Long Small Small Large

The focal length also allows the calculation of angle error. Given a focal length, f , and

the difference between the filter estimated location of the target, u f p and actual location of

the target, uT p, an angular error γ can be determined. This provides another useful metric

57

to compare the particle filter’s performance across different systems.

arctan
(
uT p − u f p

f l

)
= γ (4.26)

4.2.7 Acceleration and Depth Knowledge.

Since the pixel measurements, up, vp, w, u̇p, and v̇p, are based on angle measurements,

position estimates, such as depth, are impossible to determine without knowledge of an

initial length scale. However, if the target’s acceleration is non-zero and known, then the

length scale can be determined by integrating acceleration to determine velocity and the by

integrating velocity to determine acceleration. If the known acceleration is zero, no length

scale can be determined since integrating results in a trivial solution. The results for EPF-B

contained in 5 demonstrate the validity of requiring a non-zero acceleration.

4.3 Evaluated Particle Filter A

EPF-A uses the camera measurements, uc, vc, and wc, to track the target. This filter

simulates the data that might be generated by two cameras, or a system with a range

finding device such as LIDAR. Additionally, EPF-A will characterize the performance of

the particle filter tracking multiple hidden states in three dimensions. The hidden states are

those that cannot be directly observed. For EPF-A, the hidden states are V , θ, and φ. The

steps taken by the filter correspond to those in Section 2.5.5 and are subsequently discussed

in specific detail.

4.3.1 Initialization and Proposal Distribution.

EPF-A uses the same model as the target to both generate the initial and subsequent

proposal distributions and rotate to the camera frame. The key difference is that at the re-

sampling step, the filter adds the system noise variance to generate the proposal distribution.

Equation 4.27 through 4.29 show the states and manner in which variety is added at the

sampling step. ru is a random number sampled from a standard uniform distribution

between 0 and 1. However, any distribution may be used to generate the variety; the

58

distribution is not required to be a white Gaussian distribution.

V f ,t = V f ,t−1 + ∆V f ,t−1 +

√
σ2(x f ,V) · ru (4.27)

θ f ,t = θ f ,t−1 + ∆θ f ,t−1 +

√
σ2(x f ,θ) · ru (4.28)

φ f ,t = φ f ,t−1 + ∆φ f ,t−1 +

√
σ2(x f ,φ) · ru (4.29)

Variety was only added to V f , θ f , and φ f since the positions are derived from these states

and it is the positions that are compared against the measurements once transformed into

the appropriate frame. If variety were added directly to the states x f , y f , and z f , this would

not only be redundant, but also adversely affect the determination of the hidden states since

the particle filter may select measurements that no longer directly corresponding to the

hidden states that generated them. The necessary rotations are then performed to produce

the camera frame position states, uC, f , vC, f , and wC, f , for these particles.

4.3.2 Importance Sampling.

As discussed in Section 2.5.5, the particle filter must sample importance weights from

the relative posterior PDF p
(
yt|x̃

(i)
t

)
. EPF-A uses the same distribution model as PPF-B, that

is a normal distribution, discussed in Section 3.4.3 and detailed in Equation 3.15. Thus,

the variables that must be set are the weighing matrix, W, and the noise variance in the

measurement, σ2 (m). Models containing multiple measurements can utilize a weighing

matrix when calculating the importance weight for each particle. This allows for the model

to account for the quality of each measurements; measurements that are known to be noisier

than others may be assigned a lower weight within the weighing matrix and vice-versa.

Equation 4.30 defines the weighing matrix used by EPF-A.

ΩEPF−A =


Ω(u) 0 0

0 Ω(v) 0

0 0 Ω(w)

 (4.30)

The importance weights are subsequently normalized using Equation 2.25.

59

4.3.3 Resampling and Global State Estimation.

EPF-A uses the re-sampling algorithm outlined in Section 2.5.5.4. The re-sampling

step generates the approximation of the posterior filtering distribution p
(
xt|y1:t

)
. The

estimated global states are determined by taking an average mean of the posterior filtering

distribution.

4.3.4 Preliminary Evaluation.

Before conducting a battery of evaluation tests, a single test was performed to ensure

EPF-A is able to function. Initial conditions for the target and filter differ, forcing the filter

to locate and track the target, and measurement noise was added. Due to confidence in the

performance of this filter, the target and filter used differing initial conditions to determine

if the filter could track to the target. The filter is compared against the Simple Linear Model

A (SLMA) and Evaluation Kalman Filter A (EKF-A), both comparison filters developed

in Section 5.2.2.1 and 5.2.2.3 respectively. Additional tests and performance criteria,

including hidden state evaluation, is discussed in Chapter 5. Table 4.3 and 4.4 contains the

initial conditions and measurement variances. The results are plotted in Figure 4.7 and 4.8.

Table 4.3: Filter A Preliminary Evaluation Initial Conditions

States x y z V θ φ ∆x ∆y ∆z ∆V ∆θ ∆φ

Target 5 5 5 1 45 45 0 0 0 0.1 5 5

Filter 0 0 10 0 0 0 0 0 0 0 0 0

Filter Variance 1 1 1 1 0.1 0.1 0.5 0.5 0.5 0.1 0.01 0.01

60

Table 4.4: Filter A Preliminary Evaluation Measurement Noise Variances

States u v w

Target 5 5 5

Filter 5 5 5

As seen in Figure 4.7, the filter appears to track the target successfully according to

the metrics developed in Section 5.2.1. Additional tests and performance criteria, including

hidden state evaluation, is discussed in Chapter 5. Figure 4.8 demonstrates EPF-A’s ability

to track the hidden states more accurately than either SLMA or EKF-A. Table 4.5 provides

the mean values for the last 50 time steps.

Table 4.5: Filter A Preliminary Evaluation: Mean Errors

Metrics x y z V θ φ

SLMA 4.1725 4.2698 4.0238 97.3539 44.7735 121.9448

EKF-A 2.5025 6.1966 1.9997 37.7595 88.7395 56.9636

EPF-B 1.6095 1.2216 1.7188 1.9931 16.6655 51.0877

4.4 Evaluated Particle Filter B

EPF-B is nearly identical to EPF-A except that it uses the pixel measurements as

measurements; that is the pixel location, u f p and v f p, and the velocities, s f , u̇ f p, and v̇ f p, all

defined by Equation 4.33 through 4.37. These pixel measurements are based on the pixel

location of the target centroid. In contrast, the camera pixel measurements are eight sets of

pixel measurements, one for each of the observed corner points of the target. These eight

camera pixel measurements must be condensed to a single set of camera measurements

that describe the centroid. The averages of the eight pixel positions,
∑M

m=1 um
T p,t−1 and

61

Figure 4.7: Filter A Preliminary Evaluation: Position

62

Figure 4.8: Filter A Preliminary Evaluation: Velocity

63

∑M
m=1 vm

T p,t−1, are assumed to provide the representative values of the centroid location

which are used as the measurement states up and vp. Least mean squares determined the

measurement states sT , u̇T p, v̇T p, at each time step t, using an M number of matched points.

Equation 4.31 and 4.32 detail the steps taken to determine the measurement states.

[
st u̇p,t v̇p,t

]

u1

T p,t−1...u
M
T p,t−1 v1

T p,t−1...v
M
T p,t−1

0...0 ∆t...∆t

∆t...∆t 0...0

 =

[
∆u1

T p,t...∆uM
T p,t ∆v1

T p,t...∆vM
T p,t

]

Dimensions [1 × 3] [3 × 2M] [1 × 2M]

Labels A x b
(4.31)

A = b · x> · (x · x>)−1 (4.32)

Thus, EPF-B, mirroring the target model, predicts the pixel measurements expected for

each particle using Equation 4.33 through 4.37.

up, f =
uC, f

wC, f
· f l (4.33)

vp, f =
vC, f

wC, f
· f l (4.34)

s f =
ẇC, f

w f c
· f l (4.35)

u̇p, f =
u̇C, f

wC, f
· f l (4.36)

v̇p, f =
v̇C, f

wC, f
· f l (4.37)

Additionally, the weighting matrix changes slightly as seen in Equation 4.38.

ΩEPF−B =



Ω(up, f) 0 0 0 0

0 Ω(vp, f) 0 0 0

0 0 Ω(s f) 0 0

0 0 0 Ω(u̇p, f) 0

0 0 0 0 Ω(v̇p, f)


(4.38)

64

4.4.1 Preliminary Evaluation.

As with EPF-A, EPF-B underwent a preliminary test to evaluate its functionality. The

first evaluation was movement along the x-axis at constant velocity, with no measurement

noise, and the following initial conditions, seen in Table 4.6.

Table 4.6: Filter B Preliminary Evaluation Initial Conditions

States x y z V θ φ ∆x ∆y ∆z ∆V ∆θ ∆φ

Target 0 0 5 1 90 0 0 0 0 0 0 0

Filter 0 0 0 0 0 0 0 0 0 0 0 0

Filter Variance 0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1

The simulation used 500 particles and a measurement noise covariance of 30. Within

5 time steps, EPF-B crashed due to weight collapse. The last sum of weights was equal

to 3.307 × 10−220. Additional simulation runs resulted in similar results. Weight collapse,

as discussed in 2.5.6, can be mitigated, typically with the addition of particles. Multiple

subsequent evaluation were performed, using 1500 particles, and these too resulted in

weight collapse. Figure 4.9 illustrates particle collapse from the perspective particle

distribution.

65

Figure 4.9: Particle Filter B Weight Collapse

Although there still exists a spread of particles, none have sufficient weight to be

sampled. Part of this may stem from insufficient variance. As seen in the first subplot,

entitled U vs V Position Particle Weight, the target value lies outside the spread of particles

and hence, cannot be sampled. The subsequent sections detail the methods taken that

attempt to mitigate weight collapse.

4.5 Weight Collapse Mitigation

One of the core concepts of the particle filter is variance and the spread of particles

throughout the state space to include the target solution within the particle spread. As

demonstrated in Section 4.4.1, the present form of EPF-B does not include the solutions

66

within its particle spread. In order to encompass the solution, variance must be in

such a manner that expands the particle spread in the direction of the likely solution

and not in a manner that simply adds more variation in all directions. Two methods

were explored; variation along the depth vector, referred to as the Depth-Compensated

Evaluation Particle Filter B (DC), and variation dependent on the relationship between in

hidden and observable states, referred to as the Jacobian-Compensated Evaluation Particle

Filter B (JC). One further change was also made to the weighing matrix for the importance

weights.

4.5.1 Depth Vector Variation.

The DC is based on the unit vector of the target centroid as observed from the camera.

Since the camera cannot detect depth, the uC, f and vC, f variables vary in proportion to wC, f

with the same up, f × vp, f . The variance factors are based on s (the measurement of depth

over time) while maintaining good measurements of heading. One of the drawbacks of this

variation method is that it introduces variation into the position states. The position states

are derived from the hidden variables and by introducing variation directly into the position

states, the DC will affect the accuracy of the hidden states since a particle will be selected

based on combination the hidden state’s values and this injected variation.

4.5.2 State Jacobian Variation.

The JC avoids the adverse influence on the position states by only introducing variation

into the hidden states directly. The JC attempts to determine the appropriate variance

values, σ2
(
x f ,V

)
, σ

(
x f ,θ

)
, σ2

(
x f ,φ

)
, for each time step based on the amount of influence

the hidden states, V f , θ f , and φ f , will have on the measurements s f , u̇p, f , and v̇p, f . The

reason these measurements were chosen is that they are the least certain and they are

exclusively derived from the three hidden states mentioned. A first order approximation

of Equation 4.6 through 4.8 is used to evaluate the sensitivity of the measurements to the

67

states by Equation 4.39, 4.40, and 4.41.

ẋ f ,t =V f ,t · sin(θ f ,t) · sin(φ f ,t) · ∆t (4.39)

ẏ f ,t =V f ,t · cos(θ f ,t) · ∆t (4.40)

ż f =V · sin(θ f ,t) · sin(φ f ,t) · ∆t (4.41)

The velocity approximations are the transformed to the camera oriented coordinates by by

Equation 4.18. The influence of the hidden states on the measurements can be determined

by examining the eigenvalues and eigenvectors that describe the correlation between these

variables. The general formula describing how the change in states, ∆X, affects the change

in measurement states, ∆S , is described by Equation 4.42.

∆S =
∂S
∂X

∆X (4.42)

The eigenvalues and eigenvectors are drawn from the ∂S
∂X . Since the hidden states pass

through several transformations within EPF-B before being used to generate measurements,

a combination of Jacobian and rotation matrices are used, described and expanded in

equations 4.43, 4.44, and 4.45. All states are based on the individual particle state

estimates. 
∆s

∆u̇p

∆v̇p

 ≈
∇u̇,v̇,ẇ


s

up

vp




[
RG,C

]
∇V,θ,φ


ẋ

ẏ

ż






∆V

∆θ

∆φ

 (4.43)


∂s

∂u̇p

∂v̇p

 =


∂s
∂u̇

∂s
∂v̇

∂s
∂ẇ

∂u̇p

∂u̇
∂u̇p

∂v̇
∂u̇p

∂ẇ

∂v̇p

∂u̇
∂v̇p

∂v̇
∂v̇p

∂ẇ


[
RG,C

]

∂ẋ
∂v

∂ẋ
∂θ

∂ẋ
∂φ

∂ẏ
∂v

∂ẏ
∂θ

∂ẏ
∂φ

∂ż
∂v

∂ż
∂θ

∂ż
∂φ

 (4.44)


∂S

∂u̇p

∂v̇p

 =


0 0 1

w

1
w 0 0

0 1
w 0


[
RG,C

]

cos θ sin φ∆t −V sin θ sin φ∆t V cos θ cos φ∆t

cos φ∆t 0 −V sin φ∆t

sin θ sin φ∆t V cos θ sin φ∆t V cos φ sin θ∆t

 (4.45)

68

The eigenvectors, V, describe the direction and relative sensitivity of each factor. In other

words if the measurement would be positively or negatively affected by each state and in

what proportion. The eigenvalues, λ, describe the amount of influence for each eigenvector.

The measurement state variances are determined using the eigenvectors and eigenvalues,

along with scaling values, s f1 and s f2 . s f1 scales the range and s f2 sets the minimum

variance.

σ2
(
xV,θ,φ

)
= s f1 · V · diag

(
diag (λ) + s f2

)−1
(4.46)

4.5.3 Weighing Matrix Adjustment.

Of the five pixel measurements uT,p, vT,p, sT , u̇T,p, and v̇T,p, the filter is least certain of

sT since it does not directly correspond to an actual depth variable. Instead, is an estimate

dependent on ẇT,p and wT,p, defined in Equation 4.25. Since ẇT,p is a measurement of

velocity, the accuracy of the depth estimation might be increased by increasing the weight

of the three velocity measurements, u̇T,p, v̇T,p, and sT . The reasoning for this proposal is

that by weighting the velocities higher, less weight will be placed on the pixel position

since the pixel position is easier to measure. Weighting the velocities places an emphasis

on depth to match the known acceleration, which is the only parameter that can provide an

unambiguous estimate of range. This proposed adjustment will be evaluated in Section 5.4.

69

V. Simulation Tests and Results

5.1 Introduction

Once finalized, both EPF-A and EPF-B were evaluated using a variety of scenarios.

Due to the differences in the filters, each underwent different simulations. All scenarios

were conducted both without and with measurement noise to simulate realistic noisy

measurements. Results from these simulations were analyzed using various metrics in order

to evaluate the performance of both filters. Both filters were also contrasted against linear

models, SLMA and Simple Linear Model B (SLMB) that used the same measurements

provided to the respective filters. The details of these metrics and the accompanying

linear comparison models, SLMA and SLMB, are discussed in Section 5.2.1 and 5.2.2

respectively.

5.2 Particle Filter Performance Evaluation

Performance metrics must be produced in order to evaluate the viability of particle

filters. However, particle filters, due to their stochastic nature, pose two unique challenges

compared to linear filters, such as the Kalman. One challenge is devising performance

metrics. Due to their stochastic nature, each time the filter executes, the resulting estimates

will be different given the same target model and measurements. In contrast, a linear filter

will consistently return the same estimations each time it is executed, assuming the same

measurements are provided each time. In order to develop a better comparison to a linear

filter, either noise must be introduced to change the measurements or the states themselves

must be changed either by introducing system noise or by changing the initial conditions.

An additional challenge is devising a reasonable comparison to compare the filter against.

Without a baseline comparison, it is difficult to quantify how well the filter is tracking the

target. Although the filter may appear to estimate the target states, the question that must be

70

addressed is how much better does it estimate the target states compared to random guesses

of the target states.

5.2.1 Performance Metrics.

Since each execution of the particle filter results in different predictions, any proposed

metric must evaluate the filter’s performance over multiple simulations. With this

requirement in mind, one of the primary questions is how well does the filter predict the

target states, in particular the hidden states. This question may also be posed as what is

the difference, or error, between the target state and the filter estimate of that state. Two

metrics were devised that answer this question in different manners: the Mean Absolute

Error (MAE) and the Threshold Error Range (TER).

5.2.1.1 Mean Absolute Error.

The MAE provides a mean of absolute errors between the target states, x, and filter

estimate of those states, x f , over an q number of simulations at each time step, k.

xMAEt =
1
q

q∑
i

|x fi − xi|t (5.1)

The MAE shows what values the filter could reasonably be expected to return, accounting

for both good and poor estimations. Additionally, since the MAE is calculated for each

time step, specific time ranges can be evaluated; for instance, the mean estimates when

the filter is tracking to the target or how much variance could be expected between the

different filters when each has acquired and is actively tracking to the target. A drawback

of the MAE is that it does not determine the proportion of accurate estimations to poor

estimations. For instance, a reasonable mean may be returned from several good estimates

and a handful of dismal estimates. These dismal estimates, if numerous or severe enough,

could invalidate the filter, but may be obscured by the mean and never noticed otherwise.

The second metric, the TER attempts to address this issue by determining an effective

operating range of the filter.

71

5.2.1.2 Threshold Error Range.

The TER first determines the absolute error between the target states and filter

predictions, at each time step, for each simulation. At each time step, these error values

are sorted from lowest, representing the smallest error, to highest, representing the greatest

error. A percentile value, τ, determines the ratio of error values to return. If τ were 1,

then the TER would always return the maximum error found from all simulations at each

time step. If τ were 0.5, then the TER would return the error value for which half of the

simulation errors were equal to or less than for each time step; in other words the median.

Since the TER is not a mean, it is a better predictor or extreme behavior, hence the term

threshold. If a τ of 0.9 is selected, then for the error returned at a particular time step, 90%

of all simulations would have errors less than or equal to that value at that time step. The

TER determines the error to return by first determining the appropriate index number by

multiplying the selected percentile value, τ, by the number of simulations, q. The errors are

sorted lowest to highest and the error at the index corresponding to the percentile value is

returned. Equation 5.2 and 5.3 define the TER calculation, where sort is a function ranking

the corresponding errors lowest to highest.

xst , sort
∣∣∣xT − x f

∣∣∣
t

(5.2)

xT ER,t = xst (dτ · qe) (5.3)

For all scenarios detailed in Chapter 5, a threshold of 0.9 was used, meaning 90% of all

simulations in a particular scenario had errors less than or equal to the error value returned

by TER. Figure 5.1 provides a visual depiction of the TER.

72

Figure 5.1: Threshold Error

5.2.1.3 Metric Variables.

The previous performance metrics, MAE and TER evaluated performance based on

the following variables: D, the Euclidean distance between the target and filter prediction,

V , the velocity magnitude, and the heading angles, θ and φ. D is defined by Equation 5.4.

Figure 5.2 provides a visual depiction of the metric variables.

Dt =

√
(x f ,t − xT,t)2 + (y f ,t − yT,t)2 + (z f ,t − zT,t)2 (5.4)

73

Figure 5.2: Performance Metric Variables

Both D and V have unlimited error ranges, while θ and φ are constrained between 0◦

and 180◦ since the greatest possible error is a heading in the opposite direction.

5.2.2 Comparison Models.

In order to provide reasonable comparisons for the particle filter, two linear models

were developed, SLMA and SLMB, to serve as comparisons for EPF-A and EPF-B

respectively. Each uses the same measurements provided to the filter it is compared against,

and attempts to predict the target states. Additionally a Kalman filter, EKF-A similar to

PKF-B, was developed as an additional comparison for EPF-A. A comparison Kalman

filter was not developed for EPF-B due to EPF-B’s immaturity compared to EPF-A as

discussed in Section 4.4 and 5.4.

5.2.2.1 Linear Model A: Filter A.

The SLMA uses the measurements provided to EPF-A, which are u, v, and w,

to predict the corresponding global values. Since only position is measured, velocity

74

is approximated using a first order backward difference approximation. The SLMA is

modeled using Equation 5.5 through 5.6.

uLM,t = uLM,t−1 + u̇LM,t−1∆t (5.5)

vLM,t = vLM,t−1 + v̇LM,t−1∆t (5.6)

wLM,t = wLM,t−1 + ẇLM,t−1∆t (5.7)

The variables are then rotated from the camera frame to the global frame using the DCM

from Equation 4.1. The variable transformations are provided by Equation 5.8.

(
RDCMt

)

uLM,t

vLM,t

wLM,t

→

xLM,t

yLM,t

zLM,t

 (5.8)

The component velocities, ẋLM,t, ẋLM,t, and ẋLM,t are determined using Equation 5.9

through 5.11.

ẋLM,t =
xLM,t − xLM,t−1

∆t
(5.9)

ẏLM,t =
yLM,t − yLM,t−1

∆t
(5.10)

żLM,t =
zLM,t − zLM,t−1

∆t
(5.11)

The hidden states, V and headings θ and φ can now be estimated with the estimated global

state variables, using Equation 5.12, 5.13, and 5.14.

VLM,t =

√
ẋ2

LM,t + ẏ2
LM,t + ż2

LM,t (5.12)

θLM,t = arccos
(

ẏLM,t

VLM,t

)
(5.13)

φLM,t = arctan
(

żLM,t

ẋLM,t

)
(5.14)

5.2.2.2 Linear Model B: Filter B.

The SLMB is similar to SLMA regarding the calculation of estimated states, however

SLMB uses the measurements up, vp, s, u̇p, and v̇p, along with the target value for ẇtgtk .

75

At least one target variable must be used since the SLMB attempts to extract 3-D variables

from Two-Dimensional (2-D). The use of this target variable is minimized to prevent the

SLMB having too significant an advantage over EPF-B.

uLM,t =
wLM,t−1 · uLMp,t

f
(5.15)

vLM,t =
wLM,t−1 · vLMp,t

f
(5.16)

wLM,t =

√
ẇT,t ·

(
−uLM,t − vLM,t

)
2 · s

(5.17)

u̇LM,t =
u̇LMp,t · wLM,t

f
(5.18)

v̇LM,t =
v̇LMp,t · wLM,t

f
(5.19)

ẇLM,t =
wLM,t − wLM,t−1

∆t
(5.20)

These variables are then rotated from the camera frame to the global frame using the

inverse DCM, defined in Equation 4.1. The transformations are the same as those defined

in Equation 5.8. The hidden states, V and headings θ and φ can now be estimated with

these rotated variables using Equation 5.12 through 5.14.

5.2.2.3 Evaluate Kalman Filter A.

The EKF-A is similar to PKF-A and PKF-B, both developed in Section 3.4.4, but

EKF-A is expanded to 3-D space instead of 2-D space. The positional states are x, y, z,

while the target velocity states are linearized from V , θ, and φ to the component velocities

ẋ, ẏ, and ż as seen in Equation 5.21 through 5.23.

u̇k,t = Vk,t · sin
(
θk,t

)
· cos

(
φk,t

)
· ∆t (5.21)

v̇k,t = Vk,t · cos
(
θk,t

)
· ∆t (5.22)

ẇk,t = Vk,t · sin
(
θk,t

)
· sin

(
φk,t

)
· ∆t (5.23)

76

The component velocities are transformed back to velocity magnitude and heading via

Equation 5.24 through 5.26 in order to provide a direct comparison to the target states.

u̇k,t =

√
˙xk,t

2 + ˙yk,t
2 + ˙zk,t

2 (5.24)

v̇k,t = arccos
(
θk,t

Vk,t

)
(5.25)

ẇk,t = arctan
(
φk,t

Vk,t

)
(5.26)

The control law, uk, consists of the component accelerations, ẍ, ÿ, and z̈, respectively.

The control law components are determined from the initial conditions by Equation 5.27

through 5.29.

uk,ẍ =
V̇
∆t
· sin(θ) · cos(φ)

∆t2

2
+
θ̇

∆t
· V · cos(θ) cos(φ)

∆t2

2

−
φ̇

∆t
· V · sin(θ) · sin(φ)

∆t2

2
(5.27)

uk,ÿ =
V̇
∆t
· cos(θ) ·

∆t2

2
−
θ̇

∆t
· V · sin(θ)

∆t2

2
(5.28)

uk,z̈ =
V̇
∆t
· sin(θ) · sin(φ)

∆t2

2
+
θ̇

∆t
· V · cos(θ) sin(φ)

∆t2

2

−
φ̇

∆t
· V · sin(θ) · cos(φ)

∆t2

2
(5.29)

Similarly, the system noise covariance values, σx2
ẋ,t, σx2

ẏ,t, and σx2
ż,t are also derived from

the target covariances using Equation 5.30 through 5.33.

σx2
ẋ,t = σx2

V,t · sin
(
σx2

θ,t

)
· cos

(
σx2

φ,t

)
· ∆t (5.30)

σx2
ẏ,t = σx2

V,t · cos
(
σx2

θ,t

)
· ∆t (5.31)

σx2
ż,t = σx2

V,t · sin
(
σx2

θ,t

)
· sin

(
σx2

φ,t

)
· ∆t (5.32)

Equation 5.33 through 5.38 describe the the state transition model matrix, A, the

control-input model, B, the control vector, u, the system noise covariance matrix, Q, the

measurement model, C, and the measurement noise covariance matrix, R.

77

A =



1 0 0 ∆t 0 0

0 1 0 0 ∆t 0

0 0 1 0 0 ∆t

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



(5.33) B =



∆t2
2 0 0

0 ∆t2
2 0

0 0 ∆t2
2

∆t 0 0

0 ∆t 0

0 0 ∆t



(5.34) uk =


ẍ

ÿ

z̈

 (5.35)

Q =



σ (xx) 0 0 0 0 0

0 σ
(
xy

)
0 0 0 0

0 0 σ (xz) 0 0 0

0 0 0 σ (xẋ) 0 0

0 0 0 0 σ
(
xẏ

)
0

0 0 0 0 0 σ (xż)



(5.36)

C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 (5.37) R =


σ (yx) 0 0

0 σ
(
yy

)
0

0 0 σ (yz)

 (5.38)

For all test cases within Chapter 5, EKF-A used the target initial conditions and

accurate control law based on the target’s initial conditions. PKF-B already demonstrated

within Chapter 3 the inaccuracies of the Kalman filter when provided with inaccurate initial

conditions or inaccurate control laws. Additionally, the measurements, u, v, and w were

rotated using Equation 4.19.

5.3 Evaluated Particle Filter A

EPF-A simulates the measurements received by two cameras, u, v, and w, as well

camera pan and tilt angles. Although this information would normally be obtained from two

78

cameras, only one camera rotation is used in order to simplify the modeling calculations

and reduce potential unintended sources of error. Three types of scenarios were tested:

1. Movement about the orthogonal axes with constant velocity

2. Movement in a circle about the three principal axes with constant speed

3. Movement with constant acceleration for velocity and heading angles

Although the scenarios use different initial conditions, several of the parameters are

constant, as defined in Table 5.1. A time step of 0.1 was chosen for the purposes of scaling.

Table 5.1: EPF-A Scenario Parameters

Parameter EPF-A

Number of Simulations 100

Time Step 0.1

Number of Particles 500

5.3.1 Orthogonal Axes Movement.

Six scenarios were conducted, two about each axis, one with no measurement noise

and one with measurement noise. All simulations ran for 150 time steps. Table 5.2 lists

the initial conditions for each scenario and Table 5.3 lists the the variance when noise was

used.

79

Table 5.2: Orthogonal Axes Initial Conditions

States x y z V θ φ ∆x ∆y ∆z ∆V ∆θ ∆φ

x-Axis Movement

Target 1 0 0 4 90 0 0 0 0 0 0 0

SLMA 1 0 0 4 90 0 0 0 0 0 0 0

EPF-A 0 0 0 0 0 0 0 0 0 0 0 0

y-Axis Movement

Target 0 1 0 4 0 0 0 0 0 0 0 0

SLMA 0 1 0 4 0 0 0 0 0 0 0 0

EPF-A 0 1 0 0 0 0 0 0 0 0 0 0

z-Axis Movement

Target: 0 0 10 4 90 90 0 0 0 0 0 0

SLMA 0 0 10 4 90 90 0 0 0 0 0 0

EPF-A 0 0 10 0 0 0 0 0 0 0 0 0

EPF-A Variance: 1 1 1 1 0.1 0.1 0.5 0.5 0.5 0.1 0.01 0.01

Table 5.3: Measurement Noise Variations

No Noise Noise

Measurements u v w u v w

Target 0 0 0 5 5 5

EPF-A 0 0 0 5 5 5

80

The performance of each axial movement was evaluated using the performance

metrics discussed in Section 5.2.1. Axial movements were first evaluated without

measurement noise. Figure 5.3 contains the MAE values without noise for EPF-A and

SLMA. Figure 5.4 contains the TER values without noise for EPF-A and SLMA. A single

run for movement about each axis is shown in Figure 5.5, 5.6, and 5.7. The abbreviations

used within the legend of each plot are detailed in Table 5.4.

Table 5.4: Evaluated Particle Filter A Legend Acronyms

Acronym Meaning

P EPF-A

L SLMA

K EKF-A

x Axial movement along X axis

y Axial movement along Y axis

z Axial movement along Z axis

xy Circular rotation in X/Y plane

xz Circular rotation in X/Z plane

yz Circular rotation in Y/Z plane

81

Figure 5.3: Mean Error for Axial Movement without Measurement Noise

82

Figure 5.4: Threshold Error for Axial Movement without Measurement Noise

83

Figure 5.5: Single Simulation for x-Axis Movement without Measurement Noise

84

Figure 5.6: Single Simulation for y-Axis Movement without Measurement Noise

85

Figure 5.7: Single Simulation for z-Axis Movement without Measurement Noise

86

Figure 5.3 and 5.4 demonstrate the earlier concerns of the MAE discussed in

Section 5.2.1.1, that is that the MAE may obscure the filter’s actual performance.

Additionally, Figure 5.5, 5.6, and 5.7 show the ossilatory nature of EPF-A based on its

model, discussed in Section 5.3. EPF-A’s model could be optimized for a linear model,

though for that the Kalman filter is more suitable. Table 5.5 details both the overall mean

TER and MAE values for each variable for the last 50 time units. The last 50 were used

since by this point, the EPF-A was tracking the target and no longer searching as it was

within approximately the first 25 time units.

87

Table 5.5: Mean Axial Errors for Last 50 Time Steps without Measurement Noise

Metrics D V θ φ

Mean Error

SLMA X-Axis 0.0000 0.0000 0.0000 0.0000

EKF-A X-Axis 0.0000 3.6000 0.0000 0.0000

EPF-A X-Axis 0.0845 0.1970 3.1749 3.2342

SLMA Y-Axis 0.0000 0.0000 0.0000 84.7059

EKF-A Y-Axis 0.0000 3.6000 0.0000 0.0000

EPF-A Y-Axis 0.0708 0.2322 21.1460 90.6877

SLMA Z-Axis 0.0000 0.0000 0.0000 0.0000

EKF-A Z-Axis 0.0000 3.6000 0.0000 0.0000

EPF-A Z-Axis 0.0837 0.2063 3.2913 3.2316

Threshold Error

SLMA X-Axis 0.0000 0.0000 0.0000 0.0000

EKF-A X-Axis 0.0000 3.6000 0.0000 0.0000

EPF-A X-Axis 0.0534 0.3775 6.6001 6.4208

SLMA Y-Axis 0.0000 0.0000 0.0000 130.5882

EKF-A Y-Axis 0.0000 3.6000 0.0000 0.0000

EPF-A Y-Axis 0.1319 0.4792 23.1609 158.6222

SLMA Z-Axis 0.0000 0.0000 0.0000 0.0000

EKF-A Z-Axis 0.0000 3.6000 0.0000 0.0000

EPF-A Z-Axis 0.1455 0.4140 6.6470 6.6012

88

Overall the TER is greater than MAE, indicating that there are not many distant

outliers. A common trend was that the TER was roughly twice the MAE. Additionally,

since no noise is present and the movement is completely linear (straight line, constant

velocity), the SLMA performs better than EPF-A. Furthermore, due to the stochastic nature

of the filter as discussed in Section 5.2, EPF-A has a near zero likelihood of having zero

error. In order to further verify that the distribution is regular, the TER for several different

percentile values was calculated and plotted in Figure 5.8.

89

Figure 5.8: Comparison of Threshold Values for X-Axis Movement with No Measurement

Noise

90

As seen in Figure 5.8, the TERs showed regularly increasing error with increasing

percentile. Since they did not all tend towards a common nonzero value, this indicated

there is little chance of bias being present. Alternatively, bias did exist within the first

25 time steps when the filter was tracking the target. This bias existed due to incorrect

initial conditions. Also of note is the increase in θ heading error present in EPF-A for

movement along the y-axis. In theory, this error should cause an increase in position error

since the direction for speed is not in the direction of the target. For this scenario, the

target θ should be equal to 90, which is equal to the target value. However, the cosine of

18.7662 and 16.7740 are 0.9468 and 0.9613 respectively. When the variance for θ, 0.1, is

added during the importance sampling step, particles that match the target θ are generated,

thus allowing the particle filter to continue tracking the target despite the heading error.

The errors in φ are due to the presence of singularity about the y-axis. The potential for

less accurate particles to be chosen increases, since one of the measurements and hence

selection criteria, φ, is meaningless and cannot be used as a discriminator. This is not a flaw

on the particle filter, but rather a flaw inherent in the parametrization of the variables. In

order to avoid singularities, and increase accuracy, an alternate method of parametrization,

such as quaternions, should be used. Subsequent scenarios introduced measurement noise

as seen in Figure 5.9 and 5.10. Figure 5.9 contains the MAE values with noise for EPF-A

and SLMA and Figure 5.10 contains the TER with noise. A single run for movement about

each axis is shown in Figure 5.11, 5.12, and 5.13.

91

Figure 5.9: Mean Error for Axial Movement with Measurement Noise

92

Figure 5.10: Threshold Error for Axial Movement with Measurement Noise

93

Figure 5.11: Single Simulation for x-Axis Movement with Measurement Noise

94

Figure 5.12: Single Simulation for y-Axis Movement with Measurement Noise

95

Figure 5.13: Single Simulation for z-Axis Movement with Measurement Noise

96

With the addition of measurement noise, the SLMA performs significantly worse than

the EPF-A. Table 5.6 details both the overall mean TER and MAE values for each variable

for the last 50 time units. The last 50 were used since by this point, the EPF-A was tracking

the target and no longer searching as it was within approximately the first 25 time units.

The EKF-A still exceeds the performance of EPF-A though this is not unexpected given the

linear movement of the target. Of note is the noticeable increase in φ heading for movement

in the y direction. The cause of this is linked to the singularity around the y-axis for θ.

97

Table 5.6: Mean Axial Errors for Last 50 Time Steps with Measurement Noise

Metrics D V θ φ

Mean Error

SLMA X-Axis 3.9480 127.9528 32.5460 87.5482

PKF-A X-Axis 0.6449 3.6000 0.0000 0.0000

EPF-A X-Axis 0.9270 1.1662 16.2461 18.0057

SLMA Y-Axis 4.0027 129.8334 88.3252 90.0457

PKF-A Y-Axis 0.6449 3.6000 0.0000 0.0000

EPF-A Y-Axis 0.8610 0.9681 39.2148 89.4936

SLMA Z-Axis 3.9668 128.4708 32.3721 88.2372

PKF-A Z-Axis 0.6449 3.6000 0.0000 0.0000

EPF-A Z-Axis 0.9425 1.1267 15.9382 18.3654

Threshold Error

SLMA X-Axis 8.0090 199.9310 62.6127 160.7167

PKF-A X-Axis 0.6449 3.6000 0.0000 0.0000

EPF-A X-Axis 1.8840 2.3915 32.8683 36.5628

SLMA Y-Axis 8.1987 204.2919 139.8049 159.6471

PKF-A Y-Axis 0.6449 3.6000 0.0000 0.0000

EPF-A Y-Axis 1.7465 1.9768 50.0713 160.0725

SLMA Z-Axis 8.0351 200.2442 62.6789 158.6492

PKF-A Z-Axis 0.6449 3.6000 0.0000 0.0000

EPF-A Z-Axis 1.8864 2.2948 32.2677 37.7447

98

5.3.2 Circular Movement.

Six scenarios were conducted: two about each rotation axis where one had perfect

measurements and the other had measurement noise. All scenarios ran for 360 iterations,

so as to complete one full circular revolution. Table 5.7 lists the initial conditions for each

scenario. Measurement noise covariances were the same as those used in the orthogonal

axis scenarios, see Table 5.3.

99

Table 5.7: Circular Rotation Initial Conditions

States x y z V θ φ ∆x ∆y ∆z ∆V ∆θ ∆φ

Z-Axis Circular Rotation in the XY-Plane

Target 0 0 20 5 90 0 0 0 0 0 1 0

SLMA 0 0 20 5 90 0 0 0 0 0 0 0

EPF-A 0 0 0 0 0 0 0 0 0 0 0 0

Y-Axis Circular Rotation in the XZ-Plane

Target 0 0 10 5 90 0 0 0 0 0 0 1

SLMA 0 0 10 5 90 0 0 0 0 0 0 0

EPF-A 0 0 0 0 0 0 0 0 0 0 0 0

X-Axis Circular Rotation in the YZ-Plane

Target: 0 0 10 5 0 90 0 0 0 1 0 0

SLMA 0 0 10 5 9 90 0 0 0 0 0 0

EPF-A 0 0 0 0 0 0 0 0 0 0 0 0

EPF-A Variance: 1 1 1 1 0.1 0.1 0.5 0.5 0.5 0.1 0.01 0.01

The performance of each circular rotation was evaluated using the performance

metrics discussed in Section 5.2.1. Circular rotations were first evaluated without

measurement noise. Figure 5.14 contains the MAE values without noise for EPF-A and

SLMA and Figure 5.15 contains the TER without noise. A single run for movement about

each axis is shown in Figure 5.16, 5.17, and 5.18.

100

Figure 5.14: Mean Error for Circular Rotation without Measurement Noise

101

Figure 5.15: Threshold Error for Circular Rotation without Measurement Noise

102

Figure 5.16: Single Simulation for xy-Plane Circular Rotation with Measurement Noise

103

Figure 5.17: Single Simulation for xz-Plane Circular Rotation with Measurement Noise

104

Figure 5.18: Single Simulation for yz-Plane Circular Rotation with Measurement Noise

105

Although the SLMA performs better than the EPF-A for position estimates without

noise, its estimation of the velocity, V , and headings, θ and φ, are noticeably worse

that the EPF-A. This is due to the sinusoidal, and thus non-linear, motion of the target.

Overall, the EPF-A does perform better than the SLMA except for a few noticeable sudden

spikes in the heading angles. Similarly to the singularity for the y-axis, these spikes

are due to parametrization. The spikes occur when θ or φ reach the end of their range

and must instantaneously sweep to the other end of its range. Figure 5.19 illustrates the

relationship between the target and EPF-A variables for the three circular scenarios without

measurement noise. EKF had comparable performance to EPF-A for position estimates,

sometimes worse, sometimes better depending on the metric used. However, EKF-A

encountered significant errors when estimating the hidden states, velocity and headings.

The cause of this error stems from the type of Kalman filter EKF-A is. EKF-A is an

optimal gain estimator Kalman filter; this means that it will optimize its Kalman gains

for states with corresponding measurements. Since velocity and headings do not have

measurements, EKF-A will not return accurate predictions. Rather, it will continue to

make predictions based on the initial conditions and control law. For instances in which

the hidden states do not change, such as the axial tests (Section 5.3.1), the predictions will

be accurate. However, as soon as the hidden states change from their initial conditions,

EKF-A’s predictions will begin to become inaccurate as demonstrated in this section.

106

Figure 5.19: Target and EPF-A Variable Relationships

107

In order to generate mean values of the TER and MAE, variable time ranges are

used depending on the scenario to avoid capturing error due to the parametrization and not

explicitly the filter itself. The ranges are used for each scenario are as detailed in Table 5.8.

Table 5.9 details the mean values of TER and MAE for each variable using variable time

ranges of 50 time units.

Table 5.8: Circular Motion Time Unit Ranges for Mean Error

Scenario Time Range

XY-Circle 160-210

XZ-Circle 160-210

YZ-Circle 260-310

108

Table 5.9: Mean Circular Errors for Variable Time Steps without Measurement Noise

Metrics D V θ φ

Mean Error

SLMA XY-Circle 0.0043 0.0006 0.5000 0.0000

EKF-A XY-Circle 0.0000 0.4264 87.7572 180.0000

EPF-A XY-Circle 0.0388 0.2188 4.0210 3.0164

SLMA XZ-Circle 0.0050 0.0006 0.0000 0.5000

EKF-A XZ-Circle 0.0000 0.4264 0.0000 100.2428

EPF-A XZ-Circle 0.0353 0.2289 3.0135 3.0276

SLMA YZ-Circle 0.0027 0.0007 0.4991 0.0000

EKF-A YZ-Circle 0.0000 2.1176 14.8507 180.0000

EPF-A YZ-Circle 0.0749 0.2180 3.9874 3.0637

Threshold Error

SLMA XY-Circle 0.0043 0.0006 0.5000 0.0000

EKF-A XY-Circle 0.0000 0.4264 87.7572 180.0000

EPF-A XY-Circle 0.0792 0.4439 7.9134 6.0172

SLMA XZ-Circle 0.0050 0.0006 0.0000 0.5000

EKF-A XZ-Circle 0.0000 0.4264 0.0000 100.2428

EPF-A XZ-Circle 0.0717 0.4700 6.0365 6.0905

SLMA YZ-Circle 0.0027 0.0007 0.4991 0.0000

EKF-A YZ-Circle 0.0000 2.1176 0.0000 160.9632

EPF-A YZ-Circle 0.1353 0.4381 7.7922 6.1927

109

Similarly to the orthogonal movements, the addition of noise continues to degrade the

performance of the SLMA while minimally affecting the EKF-A (for observable states)

and EPF-A in comparison. Figure 5.20 contains the MAE values with noise for EPF-A and

SLMA and Figure 5.21 contains the TER with noise. A single run for movement about

each axis is shown in Figure 5.22, 5.23, and 5.24.

110

Figure 5.20: Mean Error for Circular Rotation with Measurement Noise

111

Figure 5.21: Threshold Error for Circular Rotation with Measurement Noise

112

Figure 5.22: Single Simulation for xy-Plane Circular Rotation with Measurement Noise

113

Figure 5.23: Single Simulation for xz-Plane Circular Rotation with Measurement Noise

114

Figure 5.24: Single Simulation for yz-Plane Circular Rotation with Measurement Noise

115

The addition of noise exacerbates the inaccuracies due to the parametrization.

Additionally, the 90 percentile is nearly consistently twice the TER, showing that the shape

of the distribution in error changed little between the tests. Table 5.10 details both the

overall mean TER and MAE values for each variable using variable time ranges of 50 time

units. As with the simulations without noise, variable time ranges are used depending on

the scenario to avoid capturing error due to the parametrization and not explicitly the filter

itself. The ranges used for each scenario are detailed in Table 5.8.

116

Table 5.10: Mean Circular Errors for Variable Time Steps with Measurement Noise

Metrics D V θ φ

SLMA XY-Circle 3.9840 128.6077 34.9708 87.1440

EKF-A XY-Circle 1.0912 0.4264 87.7572 180.0000

EPF-A XY-Circle 0.9117 1.4485 17.7539 17.5333

SLMA XZ-Circle 3.9557 128.4116 33.3388 87.4081

EKF-A XZ-Circle 1.1349 0.4264 0.0000 100.2428

EPF-A XZ-Circle 0.8526 1.4320 16.6593 17.3625

SLMA YZ-Circle 4.0371 129.6083 35.9210 87.7064

EKF-A YZ-Circle 1.7615 2.1176 14.8507 180.0000

EPF-A YZ-Circle 1.0621 1.3801 18.2654 17.7514

Threshold Error

SLMA XY-Circle 8.1087 200.1549 67.8433 158.9436

EKF-A XY-Circle 2.1392 0.4264 87.7572 180.0000

EPF-A XY-Circle 1.8668 2.9561 35.8416 36.4283

SLMA XZ-Circle 8.0401 201.2325 64.2590 159.4563

EKF-A XZ-Circle 2.2251 0.4264 0.0000 100.2428

EPF-A XZ-Circle 1.7261 2.9432 33.6400 35.1490

SLMA YZ-Circle 8.2161 203.0007 70.5211 159.1183

EKF-A YZ-Circle 3.0645 2.1176 0.0000 160.9632

EPF-A YZ-Circle 2.0837 2.8536 36.7118 36.2109

117

5.3.3 Unconstrained Motion.

Two scenarios were conducted, one without measurement noise and one with, using

a set of initial conditions including constant acceleration, detailed in Table 5.11. Table 5.3

details the noise measurement covariances used. The states were unconstrained, meaning

the target was not restricted in its movement to a special case, as was done in Section 5.3.1

and 5.3.2.

Table 5.11: Unconstrained Motion Initial Conditions

States x y z V θ φ ∆x ∆y ∆z ∆V ∆θ ∆φ

Target 5 5 5 14 45 45 0 0 0 0.1 5 5

SLMA 1 0 0 4 90 0 0 0 0 0 0 0

EPF-A 0 0 0 0 0 0 0 0 0 0 0 0

EPF-A Variance: 1 1 1 1 0.1 0.1 0.5 0.5 0.5 0.1 0.01 0.01

The angular acceleration variances were not matched in order to reduce the variety

of the heading angles during the re-sampling step of the particle filter. In order to better

visualize the motion and results, Figure 5.25 contrasts EPF-A’s and SLMA’s performance

against the target’s actual location and the noisy, measured positions.

118

Figure 5.25: Single Simulation for Unconstrained States, in Global Frame, with

Measurement Noise

EPF-A typically performed better than SLMA, as expected. The exceptions are when

either no measurement noise was present, or for brief periods for the headings θ and

φ. This is likely due the fact that EPF-A encountered difficulties tracking due to the

previously mentioned parametrization flaws. Additionally, for the φ heading error, the

119

SLMA routinely provided a severely erroneous heading, as seen in the TER. Despite the

threshold error remaining near 180, the φ heading does not have a constant bias since its

MAE remained near 90. This shows that the distribution was near uniform. TER and MAE

for both the EPF-A and SLMA are seen in Figure 5.27 and 5.26 respectively. Table 5.13

details the overall TER and MAE errors for the EPF-A and the SLMA for the last 50 time

units.

120

Figure 5.26: Mean Error for Unconstrained Motion

121

Figure 5.27: Threshold Error for Unconstrained Motion

122

Table 5.12: Mean Unconstrained Motion Errors for Last 50 Time Steps

Metrics D V θ φ

Mean Error

SLMA No Noise 0.0778 0.0729 2.5226 4.5982

EKF-A No Noise 0.0000 9.5998 61.4653 47.6136

EPF-A No Noise 0.2877 0.9549 9.4888 37.2105

SLMA With Noise 3.8808 115.9356 51.1688 84.7623

EKF-A With Noise 1.0146 1.2061 61.7888 47.7020

EPF-A With Noise 1.5379 2.0230 20.2282 55.0981

Threshold Error

SLMA No Noise 0.0778 0.0729 2.5226 4.5982

EKF-A No Noise 0.0000 9.5998 61.4653 47.6136

EPF-A No Noise 0.5909 1.8809 14.7539 53.2478

SLMA With Noise 8.0344 191.7217 97.3950 157.5901

EKF-A With Noise 1.0146 1.2061 61.7888 47.7020

EPF-A With Noise 3.1024 3.9957 32.9966 84.7418

A further distinction between EPF-A and EKF-A is observed with the addition of

system noise. As discussed in Section 3.4.5.3, once the control law does not match the

target accelerations, Kalman filter performance begins to degrade. 100 simulations were

performed with a system noise of 0.1 applied to V̇ , θ̇, and φ̇. Figure 5.28 shows the mean

error for 100 simulation runs. Since each simulation run differs due to the random system

noise, only MAE is calculated.

123

Figure 5.28: MAE for Equal Weight Matrices with System Noise

124

As expected, EKF-A performs worse than EPF-A due to the inaccuracies of the control

law for even slight amounts of system noise. This further emphasizes the particle filter’s

superiority for predicting movement of non-liner systems when compared to a optimal gain

Kalman filter.

Table 5.13: Mean Unconstrained Motion Errors with System Noise for Last 50 Time Steps

Metrics D V θ φ

Mean Error

SLMA 3.9797 115.5915 49.3769 83.0516

EKF-A 3.7723 12.9709 103.6987 162.5783

EPF-A 1.8712 2.8205 25.2042 51.9195

5.3.4 Evaluated Particle Filter A Summary.

Overall, these scenarios demonstrated the ability of the EPF-A to track a target moving

with nonlinear motion, provided only noisy measurements of the target’s location. There

are a few discrepancies when compared to the Kalman filter, however these errors can be

traced to the parameterization effects. Additionally, EPF-A was able to determine hidden

target states, velocity magnitude and heading, that could aid the control of a PTZ camera(s)

to follow the target more smoothly and accurately.

5.4 Evaluated Particle Filter B

EPF-B simulates the measurements received by a single camera, up, vp, s, u̇p,

and v̇p, as well as camera pan and tilt angles. Due to the instability of this filter,

caused by its frequent propensity to suffer from weight collapse, a single set of initial

conditions were used, see Table 5.14. The weight collapse mitigation techniques, discussed

in in Section 4.5, were evaluated against these initial conditions. The three weight

125

mitigation techniques used in Section 5.4 are Non-Compensated Evaluation Particle Filter

B (NC), Depth-Compensated Evaluation Particle Filter B (DC), and Jacobian-Compensated

Evaluation Particle Filter B (JC). These techniques were tested both with and without noise.

These techniques were also tested using two different weighing matrices in an attempt to

increase depth accuracy, as discussed in Section 4.5.3. Additionally, the performance of

these techniques was contrasted against the SLMB, as well as EPF-A and SLMA. The

variables used by EPF-A and SLMA are the same as those used in Section 5.3. Since

the same target model is used for both EPF-A and EPF-B, the measurements used by

EPF-A and SLMA are extracted before the target model generates the measurements used

by EPF-B. The two scenarios tested were:

1. Equally Weighted Weighing Matrix (EW)

2. Unequally Weighted Weighing Matrix (UW)

The values for these matrices are detailed in Equation 5.39.

Ω(up) 0 0 0 0

0 Ω(vp) 0 0 0

0 0 Ω(s) 0 0

0 0 0 Ω(u̇p) 0

0 0 0 0 Ω(v̇p)





1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





1 0 0 0 0

0 1 0 0 0

0 0 10 0 0

0 0 0 10 0

0 0 0 0 10


Weighing Matrix Equal Matrix Unequal Matrix

(5.39)

The initial conditions of both scenarios are shown in Table 5.14.

126

Table 5.14: EPF-B Scenario Initial Conditions

States x y z V θ φ ∆x ∆y ∆z ∆V ∆θ ∆φ

Target 10 10 10 5 10 10 0 0 0 0.2 0.5 0.5

SLMA 10 10 10 5 10 10 0 0 0 0.2 0.5 0.5

EPF-A 10 10 10 4 10 10 0 0 0 0 0 0

SLMB 10 10 10 5 10 10 0 0 0 0.2 0.5 0.5

EPF-B 10 10 10 4 10 10 0 0 0 0 0 0

Filter Variances

EPF-A 0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1

EPF-B 0.1 0.1 0.1 0.5 0.5 0.5 0.1 0.1 0.1 0.1 0.1 0.1

The two scenarios also shared several parameters, seen in Table 5.15. The same

parameters were used for each filter in-order to allow for direct comparisons. A step size

of 0.1 was chosen for the purposes of scaling.

Table 5.15: EPF-B Scenario Parameters

Parameter EPF-A EPF-B

Number of Simulations 50 50

Number of Iterations 50 50

Time Step 0.1 0.1

Number of Particles 500 1500

The measurement noises variances used by both scenarios are detailed in Table 5.16.

127

Table 5.16: Measurement Noise Variations

No Noise Noise

Measurements u v w u v w

Target 0 0 0 5 5 5

EPF-A 0 0 0 5 5 5

EPF-B 0 0 0 5 5 5

5.4.1 Equal Matrix.

As discussed, all three weight collapse variations were tested as well as the SLMB,

EPF-A, and SLMB to provide comparison. The TER threshold was 0.9. A single set of

initial conditions was used for two scenarios, without and with noise. All results for both

scenarios are shown in Table 5.20 to provide direct comparison. The MAE and TER for this

specific scenario are shown in Figure 5.29 and 5.30 respectively. The abbreviations used

within the legend of each plot are detailed in the list of acronyms, as well as Table 5.17.

Table 5.17: Measurement Noise Variations

Acronym Meaning

NC Non-Compensated EPF-B

DC Depth-Compensated EPF-B

JC Jacobian-Compensated EPF-B

EW Equally Weighted Weighing Matrix

UW Unequally Weighted Weighing Matrix

128

Figure 5.29: MAE for Equal Weight Matrices with No Noise

129

Figure 5.30: TER for Equal Weight Matrices with No Noise

130

As seen in both Figure 5.29 and 5.30, the performance of the three mitigation methods

varied. All three began to diverge in both distance and velocity, due to the EPF-B’s inability

to continue tracking a target as the velocity continues to increase. The un-mitigated EPF-B

and DC had little discernible difference; indeed, for the TER the DC performed worse than

the uncompensated model. As for the JC, it’s performance was less degraded since it could

change its variance to compensate for the increases in velocity. However, this increase in

variance appears to have an adverse affect on the heading angles. As expected, the SLMB

returned the most erroneous distance and velocity values and continued to worsen as time

progressed. However, the SLMB heading errors decreased as the model progressed, but

since they decreased in a linear fashion, this decrease may be coincidental since the target

is non-linear with changing velocity. Even a linear model should reflect this acceleration

via a changing slope. Figure 5.31 and 5.32 show the effects of noise on the various models.

131

Figure 5.31: MAE for Equal Weight Matrices with Noise

132

Figure 5.32: TER for Equal Weight Matrices with Noise

133

With the addition of noise, all three variations of EPF-B decreased their error

compared to the simulations without noise. Though seemingly paradoxical, the noise

allows the filter to select from a larger spread of particles. This appears to mitigate the

lagging issue caused by insufficient variance for the predicted states. Additionally, the one

filter that could change its variance, the JC becomes locked on incorrect φ heading values.

When the JC determines the velocity is increasing, it assigns additional variance to the

velocity prediction at the expense of the heading angles. If the variance needed to predict

a state decreases to the point that the spread is insufficient to allow the particle to move

towards the observed state, then a lock may occur. This does not lead to weight collapse

however, since the filter can still use measurements for other variables.

5.4.2 Unequal Matrix.

The use of an unequal matrix attempts to address the difficulties in determining depth.

By increasing the weights assigned to the three velocities, s, u̇p, and v̇p, it may be possible to

more accurately determine depth if the filter prefers accurate measurements for these states.

The relationship between the velocities and depth is seen in Equation 4.23. Figure 5.33 and

5.34 show the effects of the unequal weighing matrix without measurement noise.

134

Figure 5.33: MAE for Unequal Weight Matrices without Noise

135

Figure 5.34: TER for Unequal Weight Matrices without Noise

136

The effects of the the unequal weighted matrix are limited for non-noisy measure-

ments. There is slight improvement for velocity, and consequently distance, errors for DC.

There was little to no improvement for the un-compensated or JC filters. Effects of the

unequal weighted matrix with measurement noise are shown in Figure 5.35 and 5.36.

137

Figure 5.35: MAE for Unequal Weight Matrices with Noise

138

Figure 5.36: TER for Unequal Weight Matrices with Noise

139

The addition of noise had limited effects on the EPF-B compensator variations. Again,

there was little discernible difference between the equal weighted and unequal weighted

results for the uncompensated or JC filters. Figure 5.37 illustrates that there does not

appear to be any discernible depth improvement between equally and unequally weighing

matrices. In contrast to previous plots of Euclidean distance, Figure 5.33, 5.34, 5.35,

and 5.36, Figure 5.37 only shows the depth. Any improvement in the Euclidian distance

is due to better estimates of up and uv, not depth, since all variants of EPF-B returned

nearly equivalent erroneous depth estimates. Additionally, there does not appear to be

any significant difference between the three EPF-B filters. The MAE and TER values

are nearly identical since the successful simulations of the filter varied little from each

other. Both MAE and TER decreased for EPF-B with the addition of noise, compared to

simulations of EPF-B without noise. As discussed in Section 5.4.1, the difference between

simulations with noise and those without is not due to better filter performance, but rather

lower filter tolerance. The results improved since EPF-B would only accept more accurate

particle distributions else EPF-B would suffer weight collapse and crash until it received

a more accurate particle distribution. A comparison of the weight collapses is detailed in

Table 5.21.

140

Figure 5.37: Mean and Threshold Depth Error

141

Table 5.19 and 5.20 detail the MAE and TER means for the variations of EPF-B

as well as EPF-A, SLMB, and SLMA, without and with measurement noise respectively.

Since all variants of EPF-B begin to diverge after 25 time-steps while EPF-A and the linear

filters converge after 25 time-steps, different ranges were used to calculate the mean values

as shown in Table 5.18. This was done to provide a more accurate comparison.

Table 5.18: EPF-B Time Unit Ranges for Mean Error

Filter Time Range

EPF-B:NC 0-25

EPF-B:DC 0-25

EPF-B:JC 0-25

EPF-A: 25-50

SLMB: 25-50

SLMA: 25-50

142

Table 5.19: EPF-B and Comparison Mean Errors for Measurements without Noise

Metrics D V θ φ

Mean Absolute Error

EPF-B: EW, NC 4.2604 2.2522 26.4100 4.4401

EPF-B: EW, DC 5.0248 2.4407 26.3926 4.6636

EPF-B: EW, JC 1.8196 0.5765 26.4099 2.4577

EPF-B: UW, NC 4.3671 2.1822 26.4194 3.8628

EPF-B: UW, DC 4.2236 2.0363 26.4469 3.6290

EPF-B: UW, JC 2.0992 0.7304 26.3935 2.8901

EPF-A: 0.1466 0.3619 13.5314 6.8414

SLMB: 47.0796 12.2979 4.8728 6.9306

SLMA: 0.0214 0.1972 4.8728 6.9310

Threshold Error

EPF-B: EW, NC 11.3292 4.5755 27.5466 9.5354

EPF-B: EW, DC 13.2298 5.3592 27.5452 9.7998

EPF-B: EW, JC 4.8822 1.2041 27.4622 5.3966

EPF-B: UW, NC 10.5499 4.3951 27.5951 7.8076

EPF-B: UW, DC 9.6324 3.5654 27.5577 7.1292

EPF-B: UW, JC 4.9113 1.2384 27.3523 6.1313

EPF-A: 0.3051 0.7234 17.8481 14.1513

SLMB: 59.9637 12.2979 4.8728 6.9306

SLMA: 0.0272 0.1972 4.8728 6.9310

143

Table 5.20: EPF-B and Comparison Mean Errors for Measurements with Noise

Metrics D V θ φ

Mean Absolute Error

EPF-B: EW, NC 2.2233 0.9609 26.3606 1.6955

EPF-B: EW, DC 2.5175 1.1234 26.3990 2.1413

EPF-B: EW, JC 1.5520 0.4610 26.3718 1.1535

EPF-B: UW, NC 2.3045 0.9605 26.3809 1.8514

EPF-B: UW, DC 2.0916 0.9660 26.3437 1.8992

EPF-B:UW, JC 1.4299 0.9968 29.2395 41.2272

EPF-A: 1.4976 1.1013 28.7480 40.4263

SLMB: 46.9995 10.9148 64.3976 92.0850

SLMA: 3.8670 40.0793 52.7010 81.2926

Threshold Error

EPF-B: EW, NC 5.0777 1.7264 27.3585 3.5118

EPF-B: EW, DC 6.0791 2.3830 27.5268 4.8032

EPF-B: EW, JC 3.8818 0.8895 26.9046 2.4923

EPF-B: UW, NC 5.6134 2.0294 27.3875 3.9196

EPF-B: UW, DC 5.6078 1.9531 27.3141 3.8214

EPF-B: UW, JC 3.5946 1.9848 42.3245 90.2125

EPF-A: 3.6158 2.1992 41.6683 93.1232

SLMB: 59.9568 11.6336 121.0205 165.1795

SLMA: 10.9642 40.0239 49.7049 87.6773

144

An additional metric used is the number of weight collapses that occurred for each

particle filter per number of simulations. During each scenario, the number of times a

filter crashed due to weight collapse was recorded and the simulation was restarted at time

t = 0. This process was repeated until the filter completed all simulations in the scenario

successfully. This total number of crashes was divided by the number of simulations used

in that scenario. Thus, the metric can be interpreted as the number of weight collapses that

will occur, on average, for each successful simulation. It serves as a measure of stability.

Neither of the linear filters, SLMA and SLMB, use particles and thus do not have a weight

collapse metric.

Table 5.21: Weight Collapse for Measurements without and with Noise

Without Noise With Noise

EPF-B: Equal Weight, No Comp 16.08 86.30

EPF-B: Equal Weight, Depth 12.82 67.02

EPF-B: Equal Weight, Jacobain 158.82 806.46

EPF-B: Unequal Weight, No Comp 12.56 77.86

EPF-B: Unequal Weight, Depth 24.32 50.48

EPF-B: Unequal Weight, Jacobain 122.86 771.20

EPF-A: 0 0

As seen in Table 5.21, EPF-A never suffered a weight collapse for any of its

simulations. The variants of EPF-B suffered additional weight collapse with the

introduction of noise, which is logical since it is more difficult to determine the hidden

states in the presence of noise. However, due to the high rate of collapse, none of the

versions of EPF-A are mature enough to be used without additional development to stem

the weight collapse. The JC suffered the most frequent weight collapse which indicates it

145

is the most sensitive variant of EPF-B. Additionally, the high rate of weight collapse for JC

indicates the filter is not determining the best variance values to use.

5.4.3 Evaluated Particle Filter B Summary.

Based on the results from the EPF-B evaluation scenarios, additional development is

required to make the filter viable. All variants diverged to some degree, however the JC did

so the least, indicating the possibility that positive tracking could be achieved. However,

the JC is also the least stable filter by a significant factor. Further investigation is required

to determine the most appropriate method to change the variance.

146

VI. Conclusions and Future Work

6.1 Conclusion

This thesis developed and evaluated the possibility of using a particle filter to track

non-linear targets with both 3-D position data and pixel data from a single camera or

observer without accurate depth information. In order to track non-linear targets, the The

ability of the particle filter to track non-linear targets depends on its ability to determine

hidden states, velocity and headings, using both clean as well as noisy state variables

and measurements. Additionally, the particle filter used nonlinear models as its basis.

Simulations of vision based systems were developed to evaluate the particle filter for

simulated measurements from a system with accurate depth measurements and one without.

Two distinct particle filters were developed, for each respective system, EPF-A and EPF-B.

In conjunction with the particle filters, two linear models were also developed, SLMA and

SLMB, and a Kalamn filter, EKF-A, to serve as a baseline comparisons for the particle

filters’ performance.

EPF-A’s performance was evaluated using a variety of tests. Two series of tests

constrained the movement of the target, thus using a degenerate form of the model present

in EPF-A, in order to evaluate the filter’s ability to track a target that behaved according

to a subset of the model used in EPF-A. The filter tracked the target accurately for all

hidden states while SLMA could only track the position states that directly correlated to

the measurements of the target. With the addition of noise, EPF-A could still track the

hidden states, albet with slightly less accuracy. However, SLMA could not track any

of the states. The final series of tests did not constrain the target model, and included

constant acceleration. EPF-A closely tracked the target, despite the presence of noise,

while the SLMA could not track the target, including its position. EKF-A could track the

target, however its hidden state estimations were less accurate than those of EPF-AThis test

147

demonstrated that the filter is well-suited to track targets with noisy measurements when

the filter uses an accurate model to generate its predictions.

EPF-B’s performance was also evaluated, though only a single scenario was used

due to EPF-B’s propensity towards weight collapse. Additional scenarios were deemed

unnecessary until the weight collapse concern is addressed. A variety of methods were

evaluated to determine if any could reduce weight collapse. Although some improved

EPF-B’s performance marginally, none could successfully mitigate the weight collapse

issue. This is a key area for improvement, as illustrated by Table 5.21. Additionally, the

sensitivity of the filter to measurements prevents it from being used as effectively as EPF-A

to find the target. Rather, EPF-B must start with the same initial conditions as the target in

order to track it.

6.2 Practical Considerations

The particle filter, being probabilistic, has several key distinguishing features from

traditional linear filters that must be considered by the user.

1. Filter Model - First and foremost, the filter model should match the target as closely

as possible. If the filter model begins to differ from the target, then the particles it

produces begin to differ from the measurements, consequently producing erroneous

predictions. Additionally, since the filter does not require a linear model, no effort

should be made to simplify the model unless due to computational concerns (in which

case the particle filter may not be the most suitable filter anyway). Additionally, the

model is what allows the filter to produce reasonable estimates despite the presence

of noise. As noise variances increase, the filter relies more on its own predictions

rather than the measurements. If these predictions are inaccurate due to a poor

model, then the filter will eventually diverge from the target regardless of noise.

Even with perfect measurements, if the model is inaccurate, the filter may not be

able to determine the state variables of interest. One potential method of resolving

148

these model inaccuracies is to incorporate a machine learning phase into the filter

and allow the filter to alter its own models based on the measurements.

2. State Variables - Regarding the state variables, only the highest order variables should

be varied using their corresponding system variance. If lower order or measurement

variables are varied, the particle filter may select particles due to the variance.

While these particles may more closely match the measurements, they will no longer

correspond with their respective higher order variables due to the additional variance

‘contaminating’ their value.

3. System Variances - Similarly to the model, system variances should match the

target’s system variances as close as possible. The system variances help define the

target distribution from which particles are sampled. If the variances are too large,

then the particles are spread further from the most likely states resulting in decreased

fidelity. Additionally, large variances may result in multiple viable solutions with

complex models, as demonstrated by EPF-B. When the system variance became

too large, the particle filter could select measurements that resulted in incorrect state

variables since multiple combinations of the state variables could yield the same

measurements. If the variances are too tight, then the correct solutions may lie

outside the distribution of particles. This too can cause the error between the target

and filter states to grow since the filter does not have the ability to produce states

equal to the target states. This phenomenon was also observed with EPF-B when the

speed began to drift behind the target speed, causing a cascading ripple through the

other lower order states, such as position. If left uncorrected, this can lead to weight

collapse since the filter will eventually be unable to generate a prediction that is close

enough to the measurements to generate a sufficient weight.

149

4. Dimensionality - Similarly to other filters, as the number of dimensions increases,

the size of the state space must also increase to accommodate these dimensions.

The likelihood of weight collapse increases as the number of dimensions increases,

since the potential number of solutions may vastly exceed the number of particles.

Thus, the correct solution may be ‘lost’ in the state-space. Adding more particles to

model this state space is also a temporary solution; eventually the number of particles

needed to accurately model the state space will exceed the computational capabilities

at hand. Efforts to mitigate this vulnerability are still ongoing [5].

5. Measurement Noise - Analogous to Kalman gain, the measurement noise determines

the degree to which the filter trusts the measurements. The larger this value, the more

the filter will rely on the model predictions, once again illustrating the necessity

of an accurate model. The smaller this value, the more the filter will trust the

measurements.

6. Weighing Matrix - The weighing matrix is an additional means to control what

the filter relies on for its measurements. The different weights correspond to how

much the filter will rely on each measurement to generate the importance weight.

Depending on the system, some measurements may be inherently less reliable than

others, so their impact should be minimized, but not entirely eliminated since they

do characterize the state variables to some degree. Also, if the user wishes to track

a particular state with increased accuracy, the weights of the measurements that

correspond to that state could be increased.

7. Weight Distribution - Although a normal distribution was used in this research to

generate the importance weights, any type of distribution function may be used, so

long as the distribution mirrors that target’s noise distribution.

150

8. Statistics - The end product of the particle filter is a discrete probability distribution.

A variety of statistical methods may be used to generate the predicted state variables;

a mean is one of the simplest, but more advanced methods will likely return more

robust predictions.

6.3 Future Work

There are three key lines of future work concerning this research: real-world

implementation, further development, and space-environment simulation. Although the

EPF-A has been developed and tested within an simulated environment, it must be tested

on an actual system in order to fully validate its functionality and performance. The most

likely system is the PTZ camera setup developed at AFIT. Note, this current setup provides

the depth measurement needed by EPF-A by using two PTZ cameras to provide stereo

vision. The particle filter could be used in conjunction with the current system to provide

more accurate global target locations. Ideally, the results from the particle filter would

be used to direct the cameras to their next position, anticipating the movement of the

target in order to provide smoother and more accurate tracking. One of the key benefits

of the particle filter is that multiple non-linear target models could be used depending on

the target’s dynamic properties. Currently, the particle filter researched in this thesis is a

relatively simple SIS. As demonstrated in Section 3.4.5.4 and discussed in Section 2.5.6,

weight collapse remains an potential issue for EPF-A and a definite issue for EPF-B. More

advanced filters could mitigate such collapses by both identifying potential collapses and

redistributing the particles to stave off a collapse and by improving the tracking ability of

the filter. Better tracking results in higher particle weights, thus again reducing the risk of

weight collapse.

One such area of improvement that is unexplored is more advanced statistical methods

to both better model the discrete posterior PDF produced by the particle filter as well as

subsequently sampling this PDF to produce the set of final states. Improvements could

151

also be made to the variances; e.g. how they are generated and how they are updated as

the particle filter tracks the target. This area was explored with the various compensators

developed for EPF-B and although the results were not definite, additional exploration

should be conducted. Although JC holds the most potential to estimate depth, due to its

ability to alter the filter’s variances, in its present form it is unsuitable due to its severe

weight collapse concerns.

The final primary line of research focuses on using the particle filter to track space-

objects based on limited measurements and subsequently generate orbit properties of that

object. The particle filter performs ideally when the model used by the filter more closely

resembles the target. The space environment is a unique environment, one that has been

meticulously modeled and where models are able to predict accurate long-term behavior

of objects. The particle filter could be used to observe objects and determine their hidden

states, in this case orbital parameters, potentially using a small set of measurements. These

measurements could be vision-based from satellites, and possibly taken single camera if

the particle filter is able to render accurate depth information. By increasing the number

of sensors, orbit conflicts can be mitigated, helping to reduce congestion within the space

environment.

152

Appendix: MATLAB Code

A.1 Introduction

The following appendices contain the MATLAB code for the particle filters PPF-A,

PPF-B, EPF-A, and EPF-B, as well as the Kalman filters and linear models, PKF-A,

PKF-B, SLMA, and SLMB. Also included are the functions to gnerate the plots and

metrics. The functions are grouped based on which particle filter is being evaluated.

A.2 Prototype Particle Filter A

A single function, PPF A Final.m, executes and plots PPF-A.

clear all; close all; clc;

%% PPF−A Final

%This program will execute PPF−A which is a single dimension particle fiter

%using a highly non−linear function to demonstrate the particle filter's

%ability to track non−linear functions. No comparison filter is provided

%due to the highly non−linear function.

%% Defaults

% Change default axes fonts

set(0,'DefaultAxesFontName','Times New Roman')

set(0,'DefaultAxesFontSize', 14)

% Change default text fonts

set(0,'DefaultTextFontName', 'Times New Roman')

set(0,'DefaultTextFontSize', 14)

%% Initialize Variables

%Initial target variables

%Total number of time steps (run time)

153

T=70;

t=1;

%Initial state

x(1)=0.1;

%Process/system noise covariance

x N=1;

%Measurement noise covaraiance

x R=1;

%Initial observations

%Target measurement

y(1) = [x(1)ˆ2 / 20 + sqrt(x R)*randn];

%Initial particle variables

%Number of particles

N=100;

%Variance of initial estimate

V=2;

%Initialize particles based on initial conditions (create first

%distribution of particles)

for i = 1:N

x P(1,i) = x + sqrt(V)*randn;

end

%% Begin simulating

for t = 2:T

%% Truth Model

%Propogate state forward

x(t)=0.5*x(t−1)+25*x(t−1)/(1+x(t−1)ˆ2)+8*cos(1.2*(t−1))+sqrt(x N)*randn;

%Propogate measurements forward based on states

154

y(t)=x(t)ˆ2/20 + sqrt(x R)*rand;

%% Particle Filter

for i=1:N

%Update states for model

x P(t,i)=.5*x P(t−1,i)+25*x P(t−1,i)/(1+x P(t−1,i)ˆ2)+...

8*cos(1.2*(t−1))+sqrt(x N)*randn;

%Measurement update

y P(t,i)=x P(t,i)ˆ2/20;

%Generate and assign importance weights to particles

P w(t,i)=(1/sqrt(2*pi*x R))*exp(−(y(t)−y P(t,i))ˆ2/(2*x R));

end

%Normalize to form a probability distribution

P w(t,:) = P w(t,:)./sum(P w(t,:));

%Resample particles to form new distribution

%What this code specifically does is randomly, uniformally, sample from

%the cummulative distribution of the probability distribution

%generated by the weighted vector P w. If you sample randomly over

%this distribution, you will select values based upon there statistical

%probability, and thus, on average, pick values with the higher weights

%(i.e. high probability of being correct given the observation z).

%store this new value to the new estimate which will go back into the

%next iteration

for i=1:N

P get(t,i)=find(rand<=cumsum(P w(t,:)),1);

x P(t,i)=x P(t,P get(t,i));

end

x est(t) = mean(x P(t,:));

end

155

t=1:T;

hfig=figure('name','PPF−A');

set(hfig,'Position',[100,100,800,400]);

plot(t, x, '*−b', t, x est, '*−r', t, y, '*−−g');

xlabel('Time Step'); ylabel('Position');

legend('Target', 'PPF−A','Measurement');

set(legend,'Orientation','horizontal','Location','SouthOutside');

A.3 Prototype Particle Filter B

A single function, PPF B Final.m, executes and plots PPF-B, PKF-A, and PKF-B.

clear all; close all; clc;

%% PPF−A Final

%This program will execute PPF−A which is a single dimension particle fiter

%using a highly non−linear function to demonstrate the particle filter's

%ability to track non−linear functions. No comparison filter is provided

%due to the highly non−linear function.

%% Defaults

% Change default axes fonts

set(0,'DefaultAxesFontName','Times New Roman')

set(0,'DefaultAxesFontSize', 14)

% Change default text fonts

set(0,'DefaultTextFontName', 'Times New Roman')

set(0,'DefaultTextFontSize', 14)

%% Initialize Variables

%Initial target variables

%Total number of time steps (run time)

T=70;

156

t=1;

%Initial state

x(1)=0.1;

%Process/system noise covariance

x N=1;

%Measurement noise covaraiance

x R=1;

%Initial observations

%Target measurement

y(1) = [x(1)ˆ2 / 20 + sqrt(x R)*randn];

%Initial particle variables

%Number of particles

N=100;

%Variance of initial estimate

V=2;

%Initialize particles based on initial conditions (create first

%distribution of particles)

for i = 1:N

x P(1,i) = x + sqrt(V)*randn;

end

%% Begin simulating

for t = 2:T

%% Truth Model

%Propogate state forward

x(t)=0.5*x(t−1)+25*x(t−1)/(1+x(t−1)ˆ2)+8*cos(1.2*(t−1))+sqrt(x N)*randn;

%Propogate measurements forward based on states

y(t)=x(t)ˆ2/20 + sqrt(x R)*rand;

157

%% Particle Filter

for i=1:N

%Update states for model

x P(t,i)=.5*x P(t−1,i)+25*x P(t−1,i)/(1+x P(t−1,i)ˆ2)+...

8*cos(1.2*(t−1))+sqrt(x N)*randn;

%Measurement update

y P(t,i)=x P(t,i)ˆ2/20;

%Generate and assign importance weights to particles

P w(t,i)=(1/sqrt(2*pi*x R))*exp(−(y(t)−y P(t,i))ˆ2/(2*x R));

end

%Normalize to form a probability distribution

P w(t,:) = P w(t,:)./sum(P w(t,:));

%Resample particles to form new distribution

%What this code specifically does is randomly, uniformally, sample from

%the cummulative distribution of the probability distribution

%generated by the weighted vector P w. If you sample randomly over

%this distribution, you will select values based upon there statistical

%probability, and thus, on average, pick values with the higher weights

%(i.e. high probability of being correct given the observation z).

%store this new value to the new estimate which will go back into the

%next iteration

for i=1:N

P get(t,i)=find(rand<=cumsum(P w(t,:)),1);

x P(t,i)=x P(t,P get(t,i));

end

x est(t) = mean(x P(t,:));

end

158

t=1:T;

hfig=figure('name','PPF−A');

set(hfig,'Position',[100,100,800,400]);

plot(t, x, '*−b', t, x est, '*−r', t, y, '*−−g');

xlabel('Time Step'); ylabel('Position');

legend('Target', 'PPF−A','Measurement');

set(legend,'Orientation','horizontal','Location','SouthOutside');

A.4 Evaluated Particle Filter A

Two functions executed and plotted EPF-A, EKF-A, and SLMA. The first

function, EPF A Execute Final.m, provides the initial conditions to the second function,

EPF A Function Final.m, which executes the filters.

A.4.1 EPF A Execute Final.

%% This script analyzes EPF−A

clear all; close all; clc;

%% Defaults

% Change default axes fonts

set(0,'DefaultAxesFontName','Times New Roman')

set(0,'DefaultAxesFontSize', 14)

% Change default text fonts

set(0,'DefaultTextFontName', 'Times New Roman')

set(0,'DefaultTextFontSize', 14)

%% Parameters

%Number of simulation runs

sim run=1;

sim plot=sim run;

%Threshold Error Range

159

solution range = .9;

%Iternation Number

params(1) = 150;

%Time Steps

params(2) = .1;

dt=params(2);

T=params(1);

%% Target Parameters

%Straight Line, x−axis: 1

%Straight Line, y−axis: 2

%Straight Line, z−axis: 3

%Straight Line, −x−axis: 4

%Straight Line, −y−axis: 5

%Straight Line, −z−axis: 6

%Circle, x/y, about z: 7

%Circle, x/z, about y: 8

%Circle, y/z, about x: 9

%Prelim,chap 5: 10

%MANUAL, see below: 0

target scenario =0;

%Process Variance

%0.1: 2

%None: 0

P variance scenario = 2;

%No measurment variance: 1

%5 Measurement variance: 2

%10 Measurement variance: 3

%MANUAL: 0

m variance scenario =2;

160

%% Kalman Filter Parameters

%Initial Conditions

%Match target ICs: 1

%Without, at 0: 2

Kalman ICs = 1;

%Control Law

%Axial Simulation: 1

%Circular Simulation: 2

%Random Simulation: 3

%Set to 0: 0

Kalman Control Law = 1;

%Process Variance

Kalman Process Variance = 1;

%Measurement Variance

Kalman Measurement Variance = 1;

%% EPF−A Parameters

%With target intial conditions: 1

%Without, at 0 (x,y,z): 2

%For circle, x/y about z: 3

%For circle, x/z about y: 3

%For circle, y/z about y: 3

%MANUAL: 0

filter1 scenario = 2;

%Number of particles

p num = 500;

161

%Weights

%All equal: 1

%MANUAL: 0

filter1 weight =1;

%Filter variances

%Scenario 1: 1

%Standard: 2

%MANUAL: 0

filter1 variance =2;

%Measurment Variance

%Match measurment: 1

%Variance of .01: 2

%MANUAL: 0

%NOTE: CANNOT BE 0

filter1 measurement variance = 1;

%Manual values

%Target

manual(1) = 5; %x

manual(2) = 5; %y

manual(3) = 5; %z

manual(4) = 4; %V

manual(5) = 45; %theta

manual(6) = 45; %phi

manual(7) = 0; %dx

manual(8) = 0; %dy

manual(9) = 0; %dz

manual(10) = .1; %dV

manual(11) = 5; %dtheta

manual(12) = 5; %dphi

162

manual(13) = 0; %x dot

manual(14) = 0; %y dot

manual(15) = 0; %z dot

manual(16) = 0; %u measurement variance

manual(17) = 0; %v measurement variance

manual(18) = 0; %w measurement variance

%EPF−A

manual(19) = 0; %x

manual(20) = 0; %y

manual(21) = 0; %z

manual(22) = 0; %V

manual(23) = 0; %theta

manual(24) = 0; %phi

manual(25) = 0; %dx

manual(26) = 0; %dy

manual(27) = 0; %dz

manual(28) = 0; %dV

manual(29) = 0; %dtheta

manual(30) = 0; %dphi

manual(31) = 0; %p num

manual(32) = 0; %x variance

manual(33) = 0; %y variance

manual(34) = 0; %z variance

manual(35) = 0; %V variance

manual(36) = 0; %theta variance

manual(37) = 0; %phi variance

manual(38) = 0; %dxp variance

163

manual(39) = 0; %dyp variance

manual(40) = 0; %dzp variance

manual(41) = 0; %dVp variance

manual(42) = 0; %dthetap variance

manual(43) = 0; %dphip variance

manual(44) = 0; %Measurement noise covariance

manual(45) = 1; %Filter1 u weight

manual(46) = 1; %Filter1 v weight

manual(47) = 1; %Filter1 w weight

switch target scenario

case 1

x=1; y=0; z=0; V=4; theta=90; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 2

x=0; y=1; z=0; V=4; theta=0; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 3

x=0; y=0; z=1; V=4; theta=90; phi=90; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 4

x=1; y=0; z=0; V=4; theta=90; phi=180; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 5

x=0; y=1; z=0; V=4; theta=180; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 6

x=0; y=0; z=5; V=4; theta=90; phi=270; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

164

case 7

x=0; y=0; z=10; V=5; theta=90; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=1; dphi=0; xdot=0; ydot=0; zdot=0;

case 8

x=0; y=0; z=10; V=5; theta=90; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=1; xdot=0; ydot=0; zdot=0;

case 9

x=0; y=0; z=10; V=5; theta=0; phi=90; dx=0; dy=0; dz=0; dV=0;...

dtheta=1; dphi=0; xdot=0; ydot=0; zdot=0;

case 10

x=5; y=5; z=5; V=1; theta=45; phi=45; dx=0; dy=0; dz=0; dV=.1;...

dtheta=5; dphi=5; xdot=0; ydot=0; zdot=0;

case 0

x=manual(1); y=manual(2); z=manual(3); V=manual(4);...

theta=manual(5);

phi=manual(6); dx=manual(7); dy=manual(8); dz=manual(9);...

dV=manual(10);

dtheta=manual(11); dphi=manual(12); xdot=manual(13);...

ydot=manual(14); zdot=manual(15);

otherwise

error('INCORRECT TARGET SCENARIO SELECTION')

end

switch P variance scenario

case 1

TProcess V=.1; TProcess theta=deg2rad(5); TProcess phi=deg2rad(5);

case 2

TProcess V=.01; TProcess theta=.01; TProcess phi=.01;

case 0

TProcess V=0; TProcess theta=0; TProcess phi=0;

otherwise

error('INCORRECT PROCESS VARIANCE SCENARIO SELECTION')

165

end

switch m variance scenario

case 1

Mu var=0; Mv var=0; Mw var=0;

case 2

Mu var=5; Mv var=5; Mw var=5;

case 3

Mu var=10; Mv var=10; Mw var=10;

case 0

Mu var=manual(16); Mv var=manual(17); Mw var=manual(18);

otherwise

error('INCORRECT VARIANCE SCENARIO SELECTION')

end

switch Kalman ICs

case 1

xk1=x; yk1=y; zk1=z; Vk1=V; thetak1=theta; phik1=phi;

dxk1=dx; dyk1=dy; dzk1=dz; dVk1=dV; dthetak1=dtheta; dphik1=dphi;

case 2

xk1=0; yk1=0; zk1=0; Vk1=0; thetak1=0; phik1=0;

end

switch Kalman Control Law

case 1

K ux=(dV/dt)*sind(thetak1)*cosd(phik1)*(dtˆ2/2)+...

(dtheta/dt)*Vk1*cosd(thetak1)*cosd(phik1)*(dtˆ2/2)+...

−(dphi/dt)*Vk1*sind(thetak1)*sind(phik1)*(dtˆ2/2);

K uy=(dV/dt)*cosd(thetak1)*(dtˆ2/2)−...

(dtheta/dt)*Vk1*sind(thetak1)*(dtˆ2/2);

166

K uz=(dV/dt)*sind(thetak1)*sind(phik1)*(dtˆ2/2)+...

(dtheta/dt)*Vk1*cosd(thetak1)*sind(phik1)*(dtˆ2/2)+...

(dphi/dt)*Vk1*sind(thetak1)*cosd(phik1)*(dtˆ2/2);

case 2

K ux=.5; K uy=.5; K uz=.5;

case 3

K ux=1; K uy=1; K uz=1;

end

switch Kalman Process Variance

case 1

KProcess x=1; KProcess y=1; KProcess z=1;

KProcess dx=TProcess V*sind(TProcess theta)*cosd(TProcess phi)*dt;

KProcess dy=TProcess V*cosd(TProcess theta)*dt;

KProcess dz=TProcess V*sind(TProcess theta)*sind(TProcess phi)*dt;

end

switch Kalman Measurement Variance

case 1

KMu var=Mu var; KMv var=Mv var; KMw var=Mw var;

end

switch filter1 scenario

case 1

xp1=x; yp1=y; zp1=z; Vp1=V; thetap1=theta; phip1=phi;

dxp1=dx; dyp1=dy; dzp1=dz; dVp1=dV; dthetap1=dtheta; dphip1=dphi;

case 2

xp1=0; yp1=0; zp1=0; Vp1=0; thetap1=0; phip1=0;

dxp1=0; dyp1=0; dzp1=0; dVp1=0; dthetap1=0; dphip1=0;

case 3

167

xp1=0; yp1=0; zp1=15; Vp1=0; thetap1=0; phip1=0;

dxp1=0; dyp1=0; dzp1=0; dVp1=0; dthetap1=0; dphip1=0;

case 0

xp1=manual(19); yp1=manual(20); zp1=manual(21);

Vp1=manual(22); thetap1=manual(23); phip1=manual(24);

dxp1=manual(25); dyp1=manual(26); dzp1=manual(27);

dVp1=manual(28); dthetap1=manual(29); dphip1=manual(30);

otherwise

error('INCORRECT FILTER1 INTIAL CONDITIONS')

end

switch filter1 variance

case 1

xp1 v=1; yp1 v=1; zp1 v=1; Vp1 v=.5; thetap1 v=.1; phip1 v=.1;

dxp1 v=.5; dyp1 v=.5; dzp1 v=.5; dVp1 v=.3; dthetap1 v=.1;...

dphip1 v=.1;

case 2

xp1 v=1; yp1 v=1; zp1 v=1; Vp1 v=1; thetap1 v=.1; phip1 v=.1;

dxp1 v=.5; dyp1 v=.5; dzp1 v=.5; dVp1 v=.1; dthetap1 v=.01;...

dphip1 v=.01;

case 0

xp1 v=manual(32); yp1 v=manual(33); zp1 v=manual(34);

Vp1 v=manual(35); thetap1 v=manual(36); phip1 v=manual(37);

dxp1 v=manual(38); dyp1 v=manual(39); dzp1 v=manual(40);

dVp1 v=manual(41); dthetap1 v=manual(42); dphip1 v=manual(43);

otherwise

error('INCORRECT FILTER1 STATE VARIANCES')

end

switch filter1 measurement variance

case 1

m1 v=Mu var;

168

case 2

m1 v=.1;

case 3

m1 v=.1;

case 0

m1 v=manual(44);

otherwise

error('INCORRECT FILTER1 MEASUREMENT VARIANCES')

end

switch filter1 weight

case 1

W u=1; W v=1; W w=1;

case 0

W u=manual(45); W v=manual(46); W w=manual(47);

otherwise

error('INCORRECT FILTER1 WEIGHTS')

end

target(1) = x; %x

target(2) = y; %y

target(3) = z; %z

target(4) = V; %V

target(5) = theta; %theta

target(6) = phi; %phi

target(7) = dx; %dx

target(8) = dy; %dy

target(9) = dz; %dz

target(10) = dV; %dV

target(11) = dtheta; %dtheta

target(12) = dphi; %dphi

target(13) = xdot; %x dot

169

target(14) = ydot; %y dot

target(15) = zdot; %z dot

target(16) = TProcess V;

target(17) = TProcess theta;

target(18) = TProcess phi;

obs(1) = Mu var;

obs(2) = Mv var;

obs(3) = Mw var;

Kfilter(1) = xk1;

Kfilter(2) = yk1;

Kfilter(3) = zk1;

Kfilter(4) = Vk1;

Kfilter(5) = thetak1;

Kfilter(6) = phik1;

Kfilter(7) = K ux;

Kfilter(8) = K uy;

Kfilter(9) = K uz;

Kfilter(10) = KProcess x;

Kfilter(11) = KProcess y;

Kfilter(12) = KProcess z;

Kfilter(13) = KProcess dx;

Kfilter(14) = KProcess dy;

Kfilter(15) = KProcess dz;

Kfilter(16) = KMu var;

Kfilter(17) = KMv var;

Kfilter(18) = KMw var;

filter1(1) = xp1; %x

filter1(2) = yp1; %y

filter1(3) = zp1; %z

170

filter1(4) = Vp1; %V

filter1(5) = thetap1; %

filter1(6) = phip1;

filter1(7) = dxp1;

filter1(8) = dyp1;

filter1(9) = dzp1;

filter1(10) = dVp1;

filter1(11) = dthetap1;

filter1(12) = dphip1;

filter1(13) = p num;

filter1(14) = xp1 v; %x variance

filter1(15) = yp1 v; %y variance

filter1(16) = zp1 v; %z variance

filter1(17) = Vp1 v; %V variance

filter1(18) = thetap1 v; %theta variance

filter1(19) = phip1 v; %phi variance

filter1(20) = dxp1 v; %dxp variance

filter1(21) = dyp1 v; %dyp variance

filter1(22) = dzp1 v; %dzp variance

filter1(23) = dVp1 v; %dVp variance

filter1(24) = dthetap1 v; %dthetap variance

filter1(25) = dphip1 v; %dphip variance

filter1(26) = m1 v; %Measurement noise covariance

filter1(27) = W u;

filter1(28) = W v;

filter1(29) = W w;

for i=1:sim run

171

[T G cent, O G cent, O C cent, K G S, P G S, L G cent, L C cent] =...

EPF A Function Final(params, target, obs, Kfilter, filter1);

%Convert to degrees

T G cent(:,[5,6,11,12])=rad2deg(T G cent(:,[5,6,11,12]));

P G S(:,[5,6,11,12])=rad2deg(P G S(:,[5,6,11,12]));

L G cent(:,[8,9])=rad2deg(L G cent(:,[8,9]));

K G S(:,[5,6])=rad2deg(K G S(:,[5,6]));

sim T G cent(:,:,i)=T G cent;

sim O G cent(:,:,i)=O G cent;

sim K G S(:,:,i)=K G S;

sim P G S(:,:,i)=P G S;

sim L G cent(:,:,i)=L G cent;

i

end

switch sim plot

case 1

fig=1;

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 800]); %[x y width height]

axis equal

xlabel('X');

ylabel('Y');

zlabel('Z');

for i2=4:params(1)

hold on;

scatter3(T G cent(i2,1),T G cent(i2,2),T G cent(i2,3),'b');

scatter3(O G cent(i2,4),O G cent(i2,5),O G cent(i2,6),'k');

scatter3(L G cent(i2,1),L G cent(i2,2),L G cent(i2,3),'g');

scatter3(K G S(i2,1),K G S(i2,2),K G S(i2,3),'m');

scatter3(P G S(i2,1),P G S(i2,2),P G S(i2,3),'r');

172

end

legend('Target','Observation','SLMA','Kalman','EPF−A',...

'Location','East')

fig=fig+1;

%Comparison of States

time=zeros(params(1),1);

for i2=3:params(1)

time(i2,1)=i2;

end

%Positions

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(3,1,1);

plot([time(1),NaN],[T G cent(1,1),NaN],'*−b',...

[time(1),NaN],[O G cent(1,1),NaN],'*−g',...

[time(1),NaN],[L G cent(1,1),NaN],'*−c',...

[time(1),NaN],[K G S(1,1),NaN],'*−m',...

[time(1),NaN],[P G S(1,1),NaN],'*−r');

legend('Target','Measurement','SLMA','EKF−A','EPF−A',...

'Location','North','Orientation','Horizontal')

set(legend,'Orientation','horizontal','Position',...

[0.3 .04 .4 .025]);

hold on;

plot(time,T G cent(:,1),'b',...

time,O G cent(:,4),'g',...

time,L G cent(:,1),'c',...

time,K G S(:,1),'m',...

time,P G S(:,1),'r');

hold on;

plot(time(1:20:end),T G cent((1:20:end),1),'*b',...

173

time(4:20:end),O G cent((4:20:end),4),'*g',...

time(8:20:end),L G cent((8:20:end),1),'*c',...

time(12:20:end),K G S((12:20:end),1),'*m',...

time((16:20:end)),P G S((16:20:end),1),'*r');

title(a,'x Position');

xlabel(a,'Time Step');

ylabel(a,'Position');

b=subplot(3,1,2);

plot(time,T G cent(:,2),'b',...

time,O G cent(:,5),'g',...

time,L G cent(:,2),'c',...

time,K G S(:,2),'m',...

time,P G S(:,2),'r');

hold on;

plot(time(1:20:end),T G cent((1:20:end),2),'*b',...

time(4:20:end),O G cent((4:20:end),5),'*g',...

time(8:20:end),L G cent((8:20:end),2),'*c',...

time(12:20:end),K G S((12:20:end),2),'*m',...

time((16:20:end)),P G S((16:20:end),2),'*r');

title(b,'y Position');

xlabel(b,'Time Step');

ylabel(b,'Position');

c=subplot(3,1,3);

plot(time,T G cent(:,3),'b',...

time,O G cent(:,6),'g',...

time,L G cent(:,3),'c',...

time,K G S(:,3),'m',...

time,P G S(:,3),'r');

hold on;

plot(time(1:20:end),T G cent((1:20:end),3),'*b',...

174

time(4:20:end),O G cent((4:20:end),6),'*g',...

time(8:20:end),L G cent((8:20:end),3),'*c',...

time(12:20:end),K G S((12:20:end),3),'*m',...

time((16:20:end)),P G S((16:20:end),3),'*r');

title(c,'z Position');

xlabel(c,'Time Step');

ylabel(c,'Position');

fig=fig+1;

%Velocity Magintude and headings

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(3,1,1);

plot([time(1),NaN],[T G cent(1,1),NaN],'*−b',...

[time(1),NaN],[L G cent(1,1),NaN],'*−c',...

[time(1),NaN],[K G S(1,1),NaN],'*−m',...

[time(1),NaN],[P G S(1,1),NaN],'*−r');

legend('Target','SLMA','EKF−A','EPF−A','Location','North',...

'Orientation','Horizontal')

set(legend,'Orientation','horizontal','Position',...

[0.3 .04 .4 .025]);

hold on;

plot(time,T G cent(:,4),'b',...

time,L G cent(:,7),'c',...

time,K G S(:,4),'m',...

time,P G S(:,4),'r');

hold on;

plot(time(1:16:end),T G cent((1:16:end),4),'*b',...

time(4:16:end),L G cent((4:16:end),7),'*c',...

time(8:16:end),K G S((8:16:end),4),'*m',...

time((12:16:end)),P G S((12:16:end),4),'*r');

title(a,'Velocity Magnitude');

175

xlabel(a,'Time Step');

ylabel(a,'Velocity');

b=subplot(3,1,2);

plot(time,T G cent(:,5),'b',...

time,L G cent(:,8),'c',...

time,K G S(:,5),'m',...

time,P G S(:,5),'r');

hold on;

plot(time(1:16:end),T G cent((1:16:end),5),'*b',...

time(4:16:end),L G cent((4:16:end),8),'*c',...

time(8:16:end),K G S((8:16:end),5),'*m',...

time((12:16:end)),P G S((12:16:end),5),'*r');

title(b,'Theta Heading');

xlabel(b,'Time Step');

ylabel(b,'Heading (deg)');

c=subplot(3,1,3);

plot(time,T G cent(:,6),'b',...

time,L G cent(:,9),'c',...

time,K G S(:,6),'m',...

time,P G S(:,6),'r');

hold on;

plot(time(1:16:end),T G cent((1:16:end),6),'*b',...

time(4:16:end),L G cent((4:16:end),9),'*c',...

time(8:16:end),K G S((8:16:end),6),'*m',...

time((12:16:end)),P G S((12:16:end),6),'*r');

title(c,'Phi Heading');

xlabel(c,'Time Step');

ylabel(c,'Heading (deg)');

fig=fig+1;

176

%% Mean Errors

for i=2:T

Error SLMA(i,:)=abs(L G cent(i,[1,2,3,7,8,9])−...

T G cent(i,[1,2,3,4,5,6]));

Error Kalman(i,:)=abs(K G S(i,:)−T G cent(i,[1,2,3,4,5,6]));

Error Particle(i,:)=abs(P G S(i,[1,2,3,4,5,6])−...

T G cent(i,[1,2,3,4,5,6]));

end

%Return Mean Errors

SLMA=mean(Error SLMA(T−25:T,:))

Kalman=mean(Error Kalman(T−25:T,:))

Particle=mean(Error Particle(T−25:T,:))

otherwise

message='WILL NOT PLOT, MULTIPLE SIMULATION RUNS'

%% Calculate performace abilities

%NOTE: Although distance and V errors are absolute, heading errors

%can only be up to 180 degrees off for both phi and theta (ie. you

%are pointinig in the complete opposite direction. Theta is

%already between 0 and 180, so aboslute errors may be taken. Phi

%though must be adjusted so that all errors are between 0 and 180

%(ex. an 'error' of 350 is really only an error of 10

%'Best' Values for filter and comparison

range index=solution range*sim run;

for i=2:params(1)

for i2=1:sim run

%Create variable vectors

t dist=sqrt(sim T G cent(i,1,i2)ˆ2+...

sim T G cent(i,2,i2)ˆ2+sim T G cent(i,3,i2)ˆ2);

k dist=sqrt(sim K G S(i,1,i2)ˆ2+sim K G S(i,2,i2)ˆ2+...

177

sim K G S(i,3,i2)ˆ2);

f dist=sqrt(sim P G S(i,1,i2)ˆ2+sim P G S(i,2,i2)ˆ2+...

sim P G S(i,3,i2)ˆ2);

c dist=sqrt(sim L G cent(i,1,i2)ˆ2+...

sim L G cent(i,2,i2)ˆ2+sim L G cent(i,3,i2)ˆ2);

vec sim K G S(i2,1)=abs(k dist−t dist);

vec sim K G S(i2,[2,3,4])=abs(sim K G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim P G S(i2,1)=abs(f dist−t dist);

vec sim P G S(i2,[2,3,4])=abs(sim P G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim L G cent(i2,1)=abs(c dist−t dist);

vec sim L G cent(i2,[2,3,4])=...

abs(sim L G cent(i,[7,8,9],i2)−...

sim T G cent(i,[4,5,6],i2));

%Phi adjustment

if vec sim K G S(i2,4)>180

vec sim K G S(i2,4)=360−vec sim K G S(i2,4);

end

if vec sim P G S(i2,4)>180

vec sim P G S(i2,4)=360−vec sim P G S(i2,4);

end

if vec sim L G cent(i2,4)>180

vec sim L G cent(i2,4)=360−vec sim L G cent(i2,4);

end

end

svec sim K G S=sort(vec sim K G S);

178

svec sim P G S=sort(vec sim P G S);

svec sim L G cent=sort(vec sim L G cent);

error t k(i,:)=svec sim K G S(range index,:);

error t f(i,:)=svec sim P G S(range index,:);

error t c(i,:)=svec sim L G cent(range index,:);

end

temp error k=mean(error t k(params(1)−50:params(1),:));

temp error f=mean(error t f(params(1)−50:params(1),:));

%Mean or average error values for filter and comparison

for i=2:params(1)

for i2=1:sim run

%Create variable vectors

t dist=sqrt(sim T G cent(i,1,i2)ˆ2+...

sim T G cent(i,2,i2)ˆ2+sim T G cent(i,3,i2)ˆ2);

k dist=sqrt(sim K G S(i,1,i2)ˆ2+sim K G S(i,2,i2)ˆ2+...

sim K G S(i,3,i2)ˆ2);

f dist=sqrt(sim P G S(i,1,i2)ˆ2+sim P G S(i,2,i2)ˆ2+...

sim P G S(i,3,i2)ˆ2);

c dist=sqrt(sim L G cent(i,1,i2)ˆ2+...

sim L G cent(i,2,i2)ˆ2+sim L G cent(i,3,i2)ˆ2);

vec sim K G S(i2,1)=abs(k dist−t dist);

vec sim K G S(i2,[2,3,4])=abs(sim K G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim P G S(i2,1)=abs(f dist−t dist);

vec sim P G S(i2,[2,3,4])=abs(sim P G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim L G cent(i2,1)=abs(c dist−t dist);

vec sim L G cent(i2,[2,3,4])=...

179

abs(sim L G cent(i,[7,8,9],i2)−...

sim T G cent(i,[4,5,6],i2));

if vec sim K G S(i2,4)>180

vec sim K G S(i2,4)=360−vec sim K G S(i2,4);

end

if vec sim P G S(i2,4)>180

vec sim P G S(i2,4)=360−vec sim P G S(i2,4);

end

if vec sim L G cent(i2,4)>180

vec sim L G cent(i2,4)=360−vec sim L G cent(i2,4);

end

end

error m k(i,1)=mean(vec sim K G S(:,1));

error m k(i,2)=mean(vec sim K G S(:,2));

error m k(i,3)=mean(vec sim K G S(:,3));

error m k(i,4)=mean(vec sim K G S(:,4));

error m f(i,1)=mean(vec sim P G S(:,1));

error m f(i,2)=mean(vec sim P G S(:,2));

error m f(i,3)=mean(vec sim P G S(:,3));

error m f(i,4)=mean(vec sim P G S(:,4));

error m c(i,1)=mean(vec sim L G cent(:,1));

error m c(i,2)=mean(vec sim L G cent(:,2));

error m c(i,3)=mean(vec sim L G cent(:,3));

error m c(i,4)=mean(vec sim L G cent(:,4));

end

180

%Bias (Overall mean for certain range versus simulation number)

bias start=params(1)−50;

bias stop=params(1);

sim runx=5;

for i=1:sim run

for i2=bias start:bias stop

t dist=sqrt(sim T G cent(i2,1,i)ˆ2+...

sim T G cent(i2,2,i)ˆ2+sim T G cent(i2,2,i)ˆ2);

k dist=sqrt(sim K G S(i2,1,i)ˆ2+sim K G S(i2,2,i)ˆ2+...

sim K G S(i2,2,i)ˆ2);

f dist=sqrt(sim P G S(i2,1,i)ˆ2+sim P G S(i2,2,i)ˆ2+...

sim P G S(i2,2,i)ˆ2);

c dist=sqrt(sim L G cent(i2,1,i)ˆ2+...

sim L G cent(i2,2,i)ˆ2+sim L G cent(i2,2,i)ˆ2);

vec2 sim K G S(i2,1)=k dist−t dist;

vec2 sim K G S(i2,[2,3,4])=sim K G S(i2,[4,5,6],i)−...

sim T G cent(i2,[4,5,6],i);

vec2 sim P G S(i2,1)=f dist−t dist;

vec2 sim P G S(i2,[2,3,4])=sim P G S(i2,[4,5,6],i)−...

sim T G cent(i2,[4,5,6],i);

vec2 sim L G cent(i2,1)=c dist−t dist;

vec2 sim L G cent(i2,[2,3,4])=...

sim L G cent(i2,[7,8,9],i)−sim T G cent(i2,[4,5,6],i);

if vec2 sim K G S(i2,4)>180

vec2 sim K G S(i2,4)=360−vec2 sim K G S(i2,4);

end

if vec2 sim P G S(i2,4)>180

vec2 sim P G S(i2,4)=360−vec2 sim P G S(i2,4);

end

181

if vec2 sim L G cent(i2,4)>180

vec2 sim L G cent(i2,4)=360−vec2 sim L G cent(i2,4);

end

if vec2 sim K G S(i2,4)<−180

vec2 sim K G S(i2,4)=abs(vec2 sim K G S(i2,4))−360;

end

if vec2 sim P G S(i2,4)<−180

vec2 sim P G S(i2,4)=abs(vec2 sim P G S(i2,4))−360;

end

if vec2 sim L G cent(i2,4)<−180

vec2 sim L G cent(i2,4)=...

abs(vec2 sim L G cent(i2,4))−360;

end

end

temp bias k(i,1)=mean(vec2 sim K G S(:,1),1);

temp bias k(i,2)=mean(vec2 sim K G S(:,2),1);

temp bias k(i,3)=mean(vec2 sim K G S(:,3),1);

temp bias k(i,4)=mean(vec2 sim K G S(:,4),1);

temp bias p(i,1)=mean(vec2 sim P G S(:,1),1);

temp bias p(i,2)=mean(vec2 sim P G S(:,2),1);

temp bias p(i,3)=mean(vec2 sim P G S(:,3),1);

temp bias p(i,4)=mean(vec2 sim P G S(:,4),1);

temp bias c(i,1)=mean(vec2 sim L G cent(:,1),1);

temp bias c(i,2)=mean(vec2 sim L G cent(:,2),1);

temp bias c(i,3)=mean(vec2 sim L G cent(:,3),1);

182

temp bias c(i,4)=mean(vec2 sim L G cent(:,4),1);

count=i

end

time=zeros(params(1),1);

for i2=2:params(1)

time(i2,1)=i2;

end

fig=1;

%TER

hfig=figure('name','Threshold Error');

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(4,1,1);

plot(time,error t c(:,1),'g',...

time,error t k(:,1),'m',...

time,error t f(:,1),'r');

legend('Comparison','Kalman','EPF−A','Location','NorthEast')

title(a,'Distance Error');

xlabel(a,'Time Step');

ylabel(a,'Error');

b=subplot(4,1,2);

plot(time,error t c(:,2),'g',...

time,error t k(:,2),'m',...

time,error t f(:,2),'r',...

time,T G cent(:,4),'b');

legend('Comparison','Kalman','EPF−A','Target',...

'Location','NorthEast')

title(b,'Velocity Error');

xlabel(b,'Time Step');

ylabel(b,'Error');

183

c=subplot(4,1,3);

plot(time,error t c(:,3),'g',...

time,error t k(:,3),'m',...

time,error t f(:,3),'r',...

time,T G cent(:,5),'b');

legend('Comparsion','Kalman','EPF−A','Target',...

'Location','NorthEast')

title(c,'Theta Heading Error');

xlabel(c,'Time Step');

ylabel(c,'Error (Deg)');

d=subplot(4,1,4);

plot(time,error t c(:,4),'g',...

time,error t k(:,4),'m',...

time,error t f(:,4),'r',...

time,T G cent(:,6),'b');

legend('Comparison','Kalman','EPF−A','Target',...

'Location','NorthEast')

title(d,'Phi Heading Error');

xlabel(d,'Time Step');

ylabel(d,'Error (Deg)');

fig=fig+1;

%MAE

hfig=figure('name','Mean Error');

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(4,1,1);

plot(time,error m c(:,1),'g',...

time,error m k(:,1),'m',...

time,error m f(:,1),'r');

legend('Comparison','Kalman','EPF−A','Location','NorthEast')

title(a,'Distance Error');

184

xlabel(a,'Time Step');

ylabel(a,'Error');

b=subplot(4,1,2);

plot(time,error m c(:,2),'g',...

time,error m k(:,2),'m',...

time,error m f(:,2),'r',...

time,T G cent(:,4),'b');

legend('Comparison','Kalman','EPF−A','Target',...

'Location','NorthEast')

title(b,'Velocity Error');

xlabel(b,'Time Step');

ylabel(b,'Error');

c=subplot(4,1,3);

plot(time,error m c(:,3),'g',...

time,error m k(:,3),'m',...

time,error m f(:,3),'r',...

time,T G cent(:,5),'b');

legend('Comparison','Kalman','EPF−A','Target',...

'Location','NorthEast')

title(c,'Theta Heading Error');

xlabel(c,'Time Step');

ylabel(c,'Error (Deg)');

d=subplot(4,1,4);

plot(time,error m c(:,4),'g',...

time,error m k(:,4),'m',...

time,error m f(:,4),'r',...

time,T G cent(:,6),'b');

legend('Comparison','Kalman','EPF−A','Target',...

'Location','NorthEast')

185

title(d,'Phi Heading Error');

xlabel(d,'Time Step');

ylabel(d,'Error (Deg)');

fig=fig+1;

%Final 50 step metrics

best error c=mean(error t c(params(1)−50:params(1),:))

best error k=mean(error t k(params(1)−50:params(1),:))

best error f=mean(error t f(params(1)−50:params(1),:))

%Final 50 step metrics

mean error c=mean(error m c(params(1)−50:params(1),:))

mean error k=mean(error m k(params(1)−50:params(1),:))

mean error f=mean(error m f(params(1)−50:params(1),:))

end

A.4.2 EPF A Function Final.

function [T G cent, O G cent, O C cent, K G cent, P G S, L G cent,...

L C cent] = Particle Filter A Function 1(params, target, obs,...

Kfilter, filter1)

%% This function is Particle Filter A, allowing for multiple scenarios or

%% simulation runs. Inputs are contained within a separate .mfile that

%% executes this file.

%% Initial conditions and setup

rng('shuffle') %Shuffle random numbers

%System parameters

T = params(1); %Number of iterations

dt = params(2); %Time step

186

% Rotation matrix between global and camera frames

Rot y=@(a) [cos(a), 0, −sin(a); 0,1,0; sin(a), 0, cos(a)];

Rot x=@(a) [1,0,0;0,cos(a), −sin(a); 0,sin(a), cos(a)];

Rot z=@(a) [cos(a),−sin(a),0;sin(a), cos(a),0;0,0,1];

PlotDCM=@(A,O) plot3(cumsum([O(1),A(1,1)]),cumsum([O(2),A(2,1)]),...

cumsum([O(3),A(3,1)]),'r−',...

cumsum([O(1),A(1,2)]),cumsum([O(2),A(2,2)]),cumsum([O(3),A(3,2)]),'g−',...

cumsum([O(1),A(1,3)]),cumsum([O(2),A(2,3)]),cumsum([O(3),A(3,3)]),'b−',...

'linewidth',5);

%% Target parameters

%Truth conditions, the inital conditions of the centroid

x = target(1);

y = target(2);

z = target(3);

V = target(4);

theta = deg2rad(target(5));

phi = deg2rad(target(6));

dx = target(7);

dy = target(8);

dz = target(9);

dV = target(10);

dtheta = deg2rad(target(11));

dphi = deg2rad(target(12));

xdot = target(13);

ydot = target(14);

zdot = target(15);

T G cent(1,:)=[x y z V theta phi dx dy dz dV dtheta dphi xdot ydot zdot];

%Process Noise

TS V(1)=target(16);

187

TS V(2)=target(17);

TS V(3)=target(18);

%Preallocation

T C cent=zeros(T,12);

T G Rotdata=zeros(T,3);

T RotG2C=zeros(3,3,T);

%% Measurement Parameters

%Initial point locations (for a cube), based of T centroid

O G point a=[T G cent(1)−.5 T G cent(2)−.5 T G cent(3)−.5];

O G point b=[T G cent(1)+.5 T G cent(2)−.5 T G cent(3)−.5];

O G point c=[T G cent(1)−.5 T G cent(2)+.5 T G cent(3)−.5];

O G point d=[T G cent(1)−.5 T G cent(2)−.5 T G cent(3)+.5];

O G point e=[T G cent(1)−.5 T G cent(2)+.5 T G cent(3)+.5];

O G point f=[T G cent(1)+.5 T G cent(2)−.5 T G cent(3)+.5];

O G point g=[T G cent(1)+.5 T G cent(2)+.5 T G cent(3)−.5];

O G point h=[T G cent(1)+.5 T G cent(2)+.5 T G cent(3)+.5];

%Form the initial cube based of points

O G points=[O G point a;O G point b;O G point f;O G point h;...

O G point g;O G point c;O G point a;O G point d;...

O G point e;O G point h;O G point f;O G point d;...

O G point e;O G point c;O G point g;O G point b];

%Number of points

O num = 16;

%Preallocation

O G cent=zeros(T,6);

O C cent=zeros(T,3);

O RotG2C=zeros(3,3,T);

188

O C points=zeros(O num,3,T);

%Measurement noise covariances

O V M(1) = obs(1);

O V M(2) = obs(2);

O V M(3) = obs(3);

%Match inital conditions

O G cent(1,:)=[T G cent(1,[1,2,3]), T G cent(1,[1,2,3])];

%% Kalman Parameters

%Control law

K u=[Kfilter(7); Kfilter(8); Kfilter(9)];

%State transition model matrix

K A=[1 0 0 dt 0 0;...

0 1 0 0 dt 0;...

0 0 1 0 0 dt;...

0 0 0 1 0 0;...

0 0 0 0 1 0;...

0 0 0 0 0 1];

%Control mode input

K B=[dtˆ2/2 0 0;...

0 dtˆ2/2 0;...

0 0 dtˆ2/2;...

dt 0 0;...

0 dt 0;...

0 0 dt];

%Observation model

K C=[1 0 0 0 0 0;...

0 1 0 0 0 0;...

0 0 1 0 0 0];

%Measurement noise variance values

189

K VM=[Kfilter(16) Kfilter(17) Kfilter(18)];

%Process Noise Covariance

K Ex=[Kfilter(10) 0 0 0 0 0;...

0 Kfilter(11) 0 0 0 0;...

0 0 Kfilter(12) 0 0 0;...

0 0 0 Kfilter(13) 0 0;...

0 0 0 0 Kfilter(14) 0;...

0 0 0 0 0 Kfilter(15)];

%Measurement noise variance matrix

K Em=[Kfilter(16) 0 0;...

0 Kfilter(17) 0;...

0 0 Kfilter(18)];

%Estimate of initial target position variance matrix

K P=K Ex;

%Initial states

xk1=Kfilter(1); yk1=Kfilter(2); zk1=Kfilter(3);

Vk1=Kfilter(4); thetak1=Kfilter(5); phik1=Kfilter(6);

%Linearize initial conditions

KS(1,:)=[xk1 yk1 zk1...

Vk1*sind(thetak1)*cosd(phik1)*dt...

Vk1*cosd(thetak1)*dt...

Vk1*sind(thetak1)*sind(phik1)*dt];

%% Particle A Parameters (U,V,W)

%Initial conditions

xp1 = filter1(1);

yp1 = filter1(2);

zp1 = filter1(3);

Vp1 = filter1(4);

thetap1 = filter1(5);

phip1 = filter1(6);

190

dxp1 = filter1(7);

dyp1 = filter1(8);

dzp1 = filter1(9);

dVp1 = filter1(10);

dthetap1 = filter1(11);

dphip1 = filter1(12);

xdotp1 = Vp1*sin(thetap1)*cos(phip1)*dt;

ydotp1 = Vp1*cos(thetap1)*dt;

zdotp1 = Vp1*sin(thetap1)*sin(phip1)*dt;

P G S(1,:)=[xp1 yp1 zp1 Vp1 thetap1 phip1 dxp1 dyp1 dzp1 dVp1 dthetap1...

dphip1 xdotp1 ydotp1 zdotp1];

%Number of particles

P num = filter1(13);

%Variances

P V S(1) = filter1(14); %x variance

P V S(2) = filter1(15); %y variance

P V S(3) = filter1(16); %z variance

P V S(4) = filter1(17); %V variance

P V S(5) = filter1(18); %theta variance

P V S(6) = filter1(19); %phi varaince

P V S(7) = filter1(20); %dxp

P V S(8) = filter1(21); %dyp

P V S(9) = filter1(22); %dzp

P V S(10) = filter1(23); %dVp

P V S(11) = filter1(24); %dthetap

P V S(12) = filter1(25); %dphip

191

P V M = filter1(26); %Measurement noise covariance

%Weighing matrix

W u = filter1(27); %u observation weight

W v = filter1(28); %v observation weight

W w = filter1(29); %w observation weight

P W = [W u 0 0; 0 W v 0; 0 0 W w];

%Initial particles for global state

P G S part=zeros(P num,15,T); %Preallocation of particle matrix

for i2=1:P num

P G S part(i2,:,1)=[P G S(1,1)+sqrt(P V S(1))*randn;...

P G S(1,2)+sqrt(P V S(2))*randn;...

P G S(1,3)+sqrt(P V S(3))*randn;...

P G S(1,4)+sqrt(P V S(4))*randn;...

P G S(1,5)+sqrt(P V S(5))*randn;...

P G S(1,6)+sqrt(P V S(6))*randn;...

P G S(1,7)+sqrt(P V S(7))*randn;...

P G S(1,8)+sqrt(P V S(8))*randn;...

P G S(1,9)+sqrt(P V S(9))*randn;...

P G S(1,10)+sqrt(P V S(10))*randn;...

P G S(1,11)+sqrt(P V S(11))*randn;...

P G S(1,12)+sqrt(P V S(12))*randn;...

P G S part(i2,10,1);...

P G S part(i2,11,1);...

P G S part(i2,12,1)];

end

%Preallocation

P G S part u=zeros(P num,15,T);

192

P RotG2C=zeros(3,3,T);

P C O part=zeros(P num,3,T);

P P O diff=zeros(P num,3,T); %NEED TO CHANGE BACK TO 5 if not W

P P W=zeros(T,P num);

%% SLMA

L G cent=zeros(T,9);

L C cent(1,[1,2,3])=O C cent(1,[1,2,3]);

L C cent(1,[4,5,6])=[0,0,0];

for i=2:T %i=1 is initial conditions

%% Truth Centroid

%Update truth centroid position

%Position values will NOT be future values: the x used here is based

%off of the previous x plus the previous delta x. Thus, delta and dot

%values pertain to the x in the same time step NOT a future x

x=T G cent(i−1,1)+T G cent(i−1,7);

y=T G cent(i−1,2)+T G cent(i−1,8);

z=T G cent(i−1,3)+T G cent(i−1,9);

V=T G cent(i−1,4)+T G cent(i−1,10);

theta=T G cent(i−1,5)+T G cent(i−1,11);

phi=T G cent(i−1,6)+T G cent(i−1,12);

xdot=V*sin(theta)*cos(phi)*dt;

ydot=V*cos(theta)*dt;

zdot=V*sin(theta)*sin(phi)*dt;

V dot=T G cent(i−1,10)/dt;

theta dot=T G cent(i−1,11)/dt;

phi dot=T G cent(i−1,12)/dt;

dx=V*sin(theta)*cos(phi)*dt+...

193

V dot*sin(theta)*cos(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*cos(phi)*(dtˆ2/2)+...

−phi dot*V*sin(theta)*sin(phi)*(dtˆ2/2);

dy=V*cos(theta)*dt+...

V dot*cos(theta)*(dtˆ2/2)−...

theta dot*V*sin(theta)*(dtˆ2/2);

dz=V*sin(theta)*sin(phi)*dt+...

V dot*sin(theta)*sin(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*sin(phi)*(dtˆ2/2)+...

phi dot*V*sin(theta)*cos(phi)*(dtˆ2/2);

dV=V dot*dt;

dtheta=theta dot*dt;

dphi=phi dot*dt;

%Add Process Noise

V=V+sqrt(TS V(1))*randn;

theta=theta+sqrt(TS V(2))*randn;

phi=phi+sqrt(TS V(3))*randn;

%New centroid positions

T G cent(i,1)=x;

T G cent(i,2)=y;

T G cent(i,3)=z;

T G cent(i,4)=V;

T G cent(i,5)=theta;

T G cent(i,6)=phi;

T G cent(i,7)=dx;

T G cent(i,8)=dy;

T G cent(i,9)=dz;

194

T G cent(i,10)=dV;

T G cent(i,11)=dtheta;

T G cent(i,12)=dphi;

T G cent(i,13)=xdot;

T G cent(i,14)=ydot;

T G cent(i,15)=zdot;

%Rotate to camera orientation

%States in the camera orientation are u,v,w and dots

%Generate angles and rotation DCM

%Camera angles assume the camera tracks the truth centroid perfectly

T G Rotdata(i,1)=sqrt(T G cent(i,1)ˆ2+T G cent(i,2)ˆ2+T G cent(i,3)ˆ2);

%Pan (phi)

T G Rotdata(i,2)=atan2(T G cent(i,3),T G cent(i,1));

%Tilt, note: tilts from y axis (positive down), so 0 is on y−axis

%(theta)

T G Rotdata(i,3)=acos(T G cent(i,2)/T G Rotdata(i,1));

%Calculate rate of rotation (phi dot), x

T G Rotdata(i,4)=(T G Rotdata(i,2)−T G Rotdata(i−1,2))/dt;

%Calculate rate of tilt (theta dot), y

T G Rotdata(i,5)=(T G Rotdata(i,3)−T G Rotdata(i−1,3))/dt;

%Create DCM based on current rotation angles

T DCM G2C=@(angz) Rot y(angz(1)−pi/2)*Rot x(angz(2)−pi/2)*Rot z(pi/2);

T RotG2C(:,:,i)=T DCM G2C(T G Rotdata(i,[2,3])).';

%Rotate centroid to camera frame

T C cent(i,[1,2,3])=T RotG2C(:,:,i)*T G cent(i,[1,2,3])'; %u,v,w

T C cent(i,[4,5,6])=T RotG2C(:,:,i)*T G cent(i,[13,14,15])'; %dot u v w

195

%% Observation Centroid and Points

%Update global point position (CUBE)

for i2=1:O num

O G points(i2,1,i)=O G points(i2,1,i−1)+T G cent(i−1,7);

O G points(i2,2,i)=O G points(i2,2,i−1)+T G cent(i−1,8);

O G points(i2,3,i)=O G points(i2,3,i−1)+T G cent(i−1,9);

end

%Calculate observed centroid based on mean of points

O G cent(i,1)=mean(O G points(:,1,i));

O G cent(i,2)=mean(O G points(:,2,i));

O G cent(i,3)=mean(O G points(:,3,i));

%Rotate to camera orientation (use same cam rot angles as in truth)

%Rotate points to camera orientation

O RotG2C(:,:,i)=T RotG2C(:,:,i);

O noise=[sqrt(O V M(1))*randn; sqrt(O V M(2))*randn;...

sqrt(O V M(3))*randn];

for i2=1:O num

O C points(i2,:,i)=O RotG2C(:,:,i)*O G points(i2,:,i)'+O noise;

end

%Calculate observed centroid (in camera frame)

O C cent(i,1)=mean(O C points(:,1,i));

O C cent(i,2)=mean(O C points(:,2,i));

O C cent(i,3)=mean(O C points(:,3,i));

T RotC2G(:,:,i)=transpose(T RotG2C(:,:,i));

O G cent(i,[4,5,6])=T RotC2G(:,:,i)*O C cent(i,[1,2,3])';

%% Kalman Filter

KS t = K A * KS(i−1,:)' + K B*K u;

196

KS(i,:)=KS t';

K P=K A*K P*K A'+K Ex';

K K=K P*K C'*inv(K C*K P*K C'+K Em);

%Rotate observations from camera to global

% K comp(i,[1,2,3])=T RotC2G(:,:,i)*O C cent(i,[1,2,3])';

%Update state estimate

KS t=KS(i,:)'+K K*(T G cent(i,[1,2,3])'−K C*KS(i,:)');

KS(i,:)=KS t';

%Update covariance estimation

K P=(eye(6)−K K*K C)*K P;

%Convert to global states

K G cent(i,1)=KS(i,1);

K G cent(i,2)=KS(i,2);

K G cent(i,3)=KS(i,3);

% K G cent(i,[1,2,3])=KS([1,2,3]);

K G cent(i,4)=abs(sqrt(KS(i,1)ˆ2+KS(i,2)ˆ2+KS(i,3)ˆ2));

K G cent(i,5)=acos(KS(i,5)/K G cent(i,4));

K G cent(i,6)=atan2(KS(i,6),KS(i,4));

%% Particle Centroid and Points (U,V,W)

%Update particles (state and observations)

%As with the Truth cent, take in the previous time step values

for i2=1:P num

%Update state

x=P G S part(i2,1,i−1)+P G S part(i2,7,i−1);

y=P G S part(i2,2,i−1)+P G S part(i2,8,i−1);

197

z=P G S part(i2,3,i−1)+P G S part(i2,9,i−1);

V=P G S part(i2,4,i−1)+P G S part(i2,10,i−1)+sqrt(P V S(4))*randn;

theta=P G S part(i2,5,i−1)+P G S part(i2,11,i−1)+...

sqrt(P V S(5))*randn;

phi=P G S part(i2,6,i−1)+P G S part(i2,12,i−1)+...

sqrt(P V S(6))*randn;

%Angle adjustment: ensure V is not negative, angles in proper range

if(V<0)

V=abs(V);

end

%Fix and reduce angles

theta=wrapTo2Pi(theta);

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

xdot=V*sin(theta)*cos(phi)*dt;

ydot=V*cos(theta)*dt;

zdot=V*sin(theta)*sin(phi)*dt;

V dot=T G cent(i−1,10)/dt;

theta dot=T G cent(i−1,11)/dt;

phi dot=T G cent(i−1,12)/dt;

dx=V*sin(theta)*cos(phi)*dt+...

V dot*sin(theta)*cos(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*cos(phi)*(dtˆ2/2)+...

−phi dot*V*sin(theta)*sin(phi)*(dtˆ2/2);

198

dy=V*cos(theta)*dt+...

V dot*cos(theta)*(dtˆ2/2)−...

theta dot*V*sin(theta)*(dtˆ2/2);

dz=V*sin(theta)*sin(phi)*dt+...

V dot*sin(theta)*sin(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*sin(phi)*(dtˆ2/2)+...

phi dot*V*sin(theta)*cos(phi)*(dtˆ2/2);

dV=V dot*dt;

dtheta=theta dot*dt;

dphi=phi dot*dt;

%New centroid positions

P G S part u(i2,1,i)=x;

P G S part u(i2,2,i)=y;

P G S part u(i2,3,i)=z;

P G S part u(i2,4,i)=V;

P G S part u(i2,5,i)=theta;

P G S part u(i2,6,i)=phi;

P G S part u(i2,7,i)=dx;

P G S part u(i2,8,i)=dy;

P G S part u(i2,9,i)=dz;

P G S part u(i2,10,i)=dV;

P G S part u(i2,11,i)=dtheta;

P G S part u(i2,12,i)=dphi;

P G S part u(i2,13,i)=xdot;

P G S part u(i2,14,i)=ydot;

P G S part u(i2,15,i)=zdot;

%Observation Update (ie. what we think the camera will see based on

199

%the states)

%Rotate to camera frame (use same angles as in Truth)

P RotG2C(:,:,i)=T RotG2C(:,:,i);

P C O part(i2,[1,2,3],i)=P RotG2C(:,:,i)*...

P G S part u(i2,[1,2,3],i)';

%Calculate difference between observation (measurement) and filter

%predicition

P P O diff(i2,:,i)=O C cent(i,:)−P C O part(i2,:,i);

%Weights to be used

P P O rawW(i,i2)=P P O diff(i2,:,i)*P W*P P O diff(i2,:,i)';

%Weight particles

P P W(i,i2)=(1/sqrt(2*pi*P V M))*exp(−(P P O diff(i2,:,i)*P W*...

P P O diff(i2,:,i)')/(2*P V M));

end

%Normalize to form a probability distribution (ie. sums to 1)

P P W(i,:)=P P W(i,:)./sum(P P W(i,:));

%Resampling: from this new distribution, we randomly resample from it

%to generate new estimate particles

for i2=1:P num

P P get(i,i2)=find(rand<=cumsum(P P W(i,:)),1);

P G S part(i2,:,i)=P G S part u(P P get(i,i2),:,i);

end

%The final estimate, state, is a metric of the final resampling

P G S(i,:)=mean(P G S part(:,:,i));

%% SLMA

200

O C cent(1,[1,2,3])=O G cent(1,[1,2,3]);

L C cent(i,1) = O C cent(i−1,1)+L C cent(i−1,4)*dt;

L C cent(i,2) = O C cent(i−1,2)+L C cent(i−1,5)*dt;

L C cent(i,3) = O C cent(i−1,3)+L C cent(i−1,6)*dt;

%Velocities

L C cent(i,4) = (O C cent(i,1)−O C cent(i−1,1))/dt;

L C cent(i,5) = (O C cent(i,2)−O C cent(i−1,2))/dt;

L C cent(i,6) = (O C cent(i,3)−O C cent(i−1,3))/dt;

%Rotate to global from camera (inverse of DCM)

L G cent(i,[1,2,3])=T RotC2G(:,:,i)*L C cent(i,[1,2,3])';

L G cent(i,4)=(L G cent(i,1)−L G cent(i−1,1))/dt;

L G cent(i,5)=(L G cent(i,2)−L G cent(i−1,2))/dt;

L G cent(i,6)=(L G cent(i,3)−L G cent(i−1,3))/dt;

V = sqrt(L G cent(i,4)ˆ2+L G cent(i,5)ˆ2+L G cent(i,6)ˆ2);

theta = acos(L G cent(i,5)/V);

phi = atan2(L G cent(i,6),L G cent(i,4));

L G cent(i,7) = V;

L G cent(i,8) = theta;

L G cent(i,9) = phi;

end

%Angle adjustment: ensure V is not negative, angles in proper range

for i=2:T

%Target

T G cent(i,5)=wrapTo2Pi(T G cent(i,5));

T G cent(i,6)=wrapTo2Pi(T G cent(i,6));

201

if(T G cent(i,4)<0)

T G cent(i,4)=abs(T G cent(i,4));

T G cent(i,6)=wrapTo2Pi(T G cent(i,6)+pi());

T G cent(i,5)=pi()−T G cent(i,5);

end

%Fix and reduce angles

if(T G cent(i,5)>pi())

theta a=T G cent(i,5)−pi();

T G cent(i,5)=pi()−theta a;

T G cent(i,6)=wrapTo2Pi(T G cent(i,6)+pi());

end

%Kalman

phi=K G cent(i,6);

if (phi > 2*pi())

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

K G cent(i,6)=abs(phi);

%Fix and reduce angles

202

theta=K G cent(i,5);

theta=wrapTo2Pi(theta);

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

K G cent(i,5)=theta;

%EPF−A

%Only need to adjust phi, v is already only absolute and theta has

%already been constrained

%DO NOT USE WRAPTO2PI!!!

phi=P G S(i,6);

if (phi > 2*pi())

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

P G S(i,6)=abs(phi);

%SLMA

%Angle adjustment: ensure V is not negative, angles in proper range

phi=L G cent(i,9);

if (phi > 2*pi())

203

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

L G cent(i,9)=abs(phi);

%Fix and reduce angles

theta=L G cent(i,8);

theta=wrapTo2Pi(theta);

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

L G cent(i,8)=theta;

end

A.5 Evaluated Particle Filter B

Two functions executed and plotted EPF-B, EPF-A, SLMA, and SLMB. The first

function, EPF B Execute Final.m, provides the initial conditions to the second function,

EPF B Function Final.m, which executes the filters.

A.5.1 EPF B Execute Final.

204

%% This script analyzes EPF−B

clear all; close all; clc;

%% Defaults

% Change default axes fonts

set(0,'DefaultAxesFontName','Times New Roman');

set(0,'DefaultAxesFontSize', 12);

% Change default text fonts

set(0,'DefaultTextFontName', 'Times New Roman');

set(0,'DefaultTextFontSize', 12);

%% Parameters

%Number of simulation runs

sim run=1;

sim plot=sim run;

%Threshold Error Range

solution range = .9;

%Iternation Number

params(1) = 5;

%Time Steps

params(2) = .1;

%Focal length

params(3) = 2000;

%% Target Parameters

%Straight Line, x−axis: 1

%Straight Line, y−axis: 2

%Straight Line, z−axis: 3

%Straight Line, −x−axis: 4

%Straight Line, −y−axis: 5

%Straight Line, −z−axis: 6

%Circle, x/y, about z: 7

205

%Circle, x/z, about y: 8

%Circle, y/z, about x: 9

%Filter B: 10

%MANUAL, see below: 0

target scenario = 10;

%Process Variance

%0.1: 2

%None: 0

P variance scenario = 2;

%No measurment variance: 1

%5 Measurement variance: 2

%10 Measurement variance: 3

%MANUAL: 0

m variance scenario =2;

%% EPF−B/EPF−A Parameters

%With target intial conditions: 1

%Without, at 0 (x,y,z): 2

%For circle, x/y about z: 3

%For circle, x/z about y: 3

%For circle, y/z about y: 3

%MANUAL: 0

filter1 scenario = 0;

filter2 scenario = 0;

%Number of particles

p num = 500;

p2 num = 1500;

%Weights EPF−A

206

%All equal: 1

%MANUAL: 0

filter1 weight =1;

%Weights EPF−B

%All equal: 1

%MANUAL: 0

filter2 weight = 0;

%Filter variances

%Scenario 1: 1

%MANUAL: 0

filter1 variance = 0;

filter2 variance = 0;

%Measurment Variance

%Match measurment: 1

%Variance of .01: 2

%Variance of .1; 3

%MANUAL: 0

%NOTE: CANNOT BE 0

filter1 measurement variance = 1;

filter2 measurement variance = 1;

%Type of correction to use for filter 2

%Noise on vector: 1

%Jacobian: 2

%No correction: 0

correction=0;

%Manual values

%Target

207

manual(1) = 0; %x

manual(2) = 0; %y

manual(3) = 5; %z

manual(4) = 1; %V

manual(5) = 90; %theta

manual(6) = 0; %phi

manual(7) = 0; %dx

manual(8) = 0; %dy

manual(9) = 0; %dz

manual(10) = 0; %dV

manual(11) = 0; %dtheta

manual(12) = 0; %dphi

manual(13) = 0; %x dot

manual(14) = 0; %y dot

manual(15) = 0; %z dot

manual(16) = 0; %u measurement variance

manual(17) = 0; %v measurement variance

manual(18) = 0; %w measurement variance

%EPF−A

manual(19) = 10; %x

manual(20) = 10; %y

manual(21) = 10; %z

manual(22) = 5; %V

manual(23) = 10; %theta

manual(24) = 10; %phi

manual(25) = 0; %dx

manual(26) = 0; %dy

manual(27) = 0; %dz

manual(28) = 0; %dV

208

manual(29) = 0; %dtheta

manual(30) = 0; %dphi

manual(31) = 500; %p num

manual(32) = .1; %x variance

manual(33) = .1; %y variance

manual(34) = .1; %z variance

manual(35) = .5; %V variance

manual(36) = .5; %theta variance

manual(37) = .5; %phi variance

manual(38) = .1; %dxp variance

manual(39) = .1; %dyp variance

manual(40) = .1; %dzp variance

manual(41) = .1; %dVp variance

manual(42) = .1; %dthetap variance

manual(43) = .1; %dphip variance

manual(44) = .1; %Measurement noise covariance

manual(45) = 1; %Filter1 u weight

manual(46) = 1; %Filter1 v weight

manual(47) = 1; %Filter1 w weight

%EPF−B

manual(48) = 10; %x

manual(49) = 10; %y

manual(50) = 10; %z

manual(51) = 5; %V

manual(52) = 10; %theta

manual(53) = 10; %phi

manual(54) = 0; %dx

209

manual(55) = 0; %dy

manual(56) = 0; %dz

manual(57) = 0; %dV

manual(58) = 0; %dtheta

manual(59) = 0; %dphi

manual(60) = 1000; %p num

manual(61) = .1; %x variance

manual(62) = .1; %y variance

manual(63) = .1; %z variance

manual(64) = .5; %V variance

manual(65) = .5; %theta variance

manual(66) = .5; %phi variance

manual(67) = .1; %dxp variance

manual(68) = .1; %dyp variance

manual(69) = .1; %dzp variance

manual(70) = .1; %dVp variance

manual(71) = .1; %dthetap variance

manual(72) = .1; %dphip variance

manual(73) = 30; %Measurement noise covariance

manual(74) = 1; %6 %1 %100 (to see if this affects the weight value)

manual(75) = 1; %6 %1

manual(76) = 1; %3 %10

manual(77) = 1; %4 %10

manual(78) = 1; %4 %10

switch target scenario

case 1

210

x=1; y=0; z=0; V=4; theta=90; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 2

x=0; y=1; z=0; V=4; theta=0; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 3

x=0; y=0; z=10; V=4; theta=90; phi=90; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 4

x=1; y=0; z=0; V=4; theta=90; phi=180; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 5

x=0; y=1; z=0; V=4; theta=180; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 6

x=0; y=0; z=10; V=4; theta=90; phi=270; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=0; xdot=0; ydot=0; zdot=0;

case 7

x=0; y=0; z=20; V=5; theta=90; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=1; dphi=0; xdot=0; ydot=0; zdot=0;

case 8

x=0; y=0; z=10; V=5; theta=90; phi=0; dx=0; dy=0; dz=0; dV=0;...

dtheta=0; dphi=1; xdot=0; ydot=0; zdot=0;

case 9

x=0; y=0; z=10; V=5; theta=0; phi=90; dx=0; dy=0; dz=0; dV=0;...

dtheta=1; dphi=0; xdot=0; ydot=0; zdot=0;

case 10

x=10; y=10; z=10; V=5; theta=10; phi=10; dx=0; dy=0; dz=0;...

dV=.2; dtheta=.5; dphi=.5; xdot=0; ydot=0; zdot=0;

case 0

x=manual(1); y=manual(2); z=manual(3); V=manual(4);...

theta=manual(5);

211

phi=manual(6); dx=manual(7); dy=manual(8); dz=manual(9);...

dV=manual(10);

dtheta=manual(11); dphi=manual(12); xdot=manual(13);...

ydot=manual(14); zdot=manual(15);

otherwise

error('INCORRECT TARGET SCENARIO SELECTION')

end

switch P variance scenario

case 1

TProcess V=.1; TProcess theta=deg2rad(5); TProcess phi=deg2rad(5);

case 2

TProcess V=.01; TProcess theta=.01; TProcess phi=.01;

case 0

TProcess V=0; TProcess theta=0; TProcess phi=0;

otherwise

error('INCORRECT PROCESS VARIANCE SCENARIO SELECTION')

end

switch m variance scenario

case 1

Mu var=0; Mv var=0; Mw var=0;

case 2

Mu var=5; Mv var=5; Mw var=5;

case 3

Mu var=10; Mv var=10; Mw var=10;

case 0

Mu var=manual(16); Mv var=manual(17); Mw var=manual(18);

otherwise

error('INCORRECT VARIANCE SCENARIO SELECTION')

end

212

switch filter1 scenario

case 1

xp1=x; yp1=y; zp1=z; Vp1=V; thetap1=theta; phip1=phi;

dxp1=dx; dyp1=dy; dzp1=dz; dVp1=dV; dthetap1=dtheta; dphip1=dphi;

case 2

xp1=0; yp1=0; zp1=0; Vp1=0; thetap1=0; phip1=0;

dxp1=0; dyp1=0; dzp1=0; dVp1=0; dthetap1=0; dphip1=0;

case 3

xp1=0; yp1=0; zp1=10; Vp1=0; thetap1=0; phip1=0;

dxp1=0; dyp1=0; dzp1=0; dVp1=0; dthetap1=0; dphip1=0;

case 0

xp1=manual(19); yp1=manual(20); zp1=manual(21);

Vp1=manual(22); thetap1=manual(23); phip1=manual(24);

dxp1=manual(25); dyp1=manual(26); dzp1=manual(27);

dVp1=manual(28); dthetap1=manual(29); dphip1=manual(30);

otherwise

error('INCORRECT FILTER1 INTIAL CONDITIONS')

end

switch filter2 scenario

case 1

xp2=x; yp2=y; zp2=z; Vp2=V; thetap2=theta; phip2=phi;

dxp2=dx; dyp2=dy; dzp2=dz; dVp2=dV; dthetap2=dtheta; dphip2=dphi;

case 2

xp2=0; yp2=0; zp2=0; Vp2=0; thetap2=0; phip2=0;

dxp2=0; dyp2=0; dzp2=0; dVp2=0; dthetap2=0; dphip2=0;

case 3

xp2=0; yp2=0; zp2=10; Vp2=0; thetap2=0; phip2=0;

dxp2=0; dyp2=0; dzp2=0; dVp2=0; dthetap2=0; dphip2=0;

case 0

xp2=manual(48); yp2=manual(49); zp2=manual(50);

Vp2=manual(51); thetap2=manual(52); phip2=manual(53);

213

dxp2=manual(54); dyp2=manual(55); dzp2=manual(56);

dVp2=manual(57); dthetap2=manual(58); dphip2=manual(59);

otherwise

error('INCORRECT FILTER1 INTIAL CONDITIONS')

end

switch filter1 variance

case 1

xp1 v=1; yp1 v=1; zp1 v=1; Vp1 v=.5; thetap1 v=.1; phip1 v=.1;

dxp1 v=.5; dyp1 v=.5; dzp1 v=.5; dVp1 v=.1; dthetap1 v=.01;...

dphip1 v=.01;

case 0

xp1 v=manual(32); yp1 v=manual(33); zp1 v=manual(34);

Vp1 v=manual(35); thetap1 v=manual(36); phip1 v=manual(37);

dxp1 v=manual(38); dyp1 v=manual(39); dzp1 v=manual(40);

dVp1 v=manual(41); dthetap1 v=manual(42); dphip1 v=manual(43);

otherwise

error('INCORRECT FILTER1 STATE VARIANCES')

end

switch filter2 variance

case 1

xp2 v=1; yp2 v=1; zp2 v=1; Vp2 v=.5; thetap2 v=.1; phip2 v=.1;

dxp2 v=.5; dyp2 v=.5; dzp2 v=.5; dVp2 v=.1; dthetap2 v=.01;...

dphip2 v=.01;

case 2

xp2 v=.1; yp2 v=.1; zp2 v=.1; Vp2 v=20; thetap2 v=4; phip2 v=4;

dxp2 v=.01; dyp2 v=.01; dzp2 v=.01; dVp2 v=.01; dthetap2 v=.01;...

dphip2 v=.01;

case 0

xp2 v=manual(61); yp2 v=manual(62); zp2 v=manual(63);

Vp2 v=manual(64); thetap2 v=manual(65); phip2 v=manual(66);

214

dxp2 v=manual(67); dyp2 v=manual(68); dzp2 v=manual(69);

dVp2 v=manual(70); dthetap2 v=manual(71); dphip2 v=manual(72);

otherwise

error('INCORRECT FILTER1 STATE VARIANCES')

end

switch filter1 measurement variance

case 1

m1 v=Mu var;

case 2

m1 v=.01;

case 3

m1 v=.1;

case 0

m1 v=manual(44);

otherwise

error('INCORRECT FILTER1 MEASUREMENT VARIANCES')

end

switch filter2 measurement variance

case 1

m2 v=Mu var;

case 2

m2 v=.01;

case 3

m2 v=30;

case 0

m2 v=manual(73);

otherwise

error('INCORRECT FILTER2 MEASUREMENT VARIANCES')

end

215

switch filter1 weight

case 1

W u=1; W v=1; W w=1;

case 0

W u=manual(45); W v=manual(46); W w=manual(47);

otherwise

error('INCORRECT FILTER1 WEIGHTS')

end

switch filter2 weight

case 1

W up=1; W vp=1; W s=1; W up dot=1; W vp dot=1;

case 0

W up=manual(74); W vp=manual(75); W s=manual(76);...

W up dot=manual(77); W vp dot=manual(78);

otherwise

error('INCORRECT FILTER2 WEIGHTS')

end

target(1) = x; %x

target(2) = y; %y

target(3) = z; %z

target(4) = V; %V

target(5) = theta; %theta

target(6) = phi; %phi

target(7) = dx; %dx

target(8) = dy; %dy

target(9) = dz; %dz

target(10) = dV; %dV

target(11) = dtheta; %dtheta

target(12) = dphi; %dphi

target(13) = xdot; %x dot

216

target(14) = ydot; %y dot

target(15) = zdot; %z dot

target(16) = TProcess V;

target(17) = TProcess theta;

target(18) = TProcess phi;

obs(1) = Mu var;

obs(2) = Mv var;

obs(3) = Mw var;

%EPF−A

filter1(1) = xp1; %x

filter1(2) = yp1; %y

filter1(3) = zp1; %z

filter1(4) = Vp1; %V

filter1(5) = thetap1; %

filter1(6) = phip1;

filter1(7) = dxp1;

filter1(8) = dyp1;

filter1(9) = dzp1;

filter1(10) = dVp1;

filter1(11) = dthetap1;

filter1(12) = dphip1;

filter1(13) = p num;

filter1(14) = xp1 v; %x variance

filter1(15) = yp1 v; %y variance

filter1(16) = zp1 v; %z variance

filter1(17) = Vp1 v; %V variance

filter1(18) = thetap1 v; %theta variance

filter1(19) = phip1 v; %phi variance

217

filter1(20) = dxp1 v; %dxp variance

filter1(21) = dyp1 v; %dyp variance

filter1(22) = dzp1 v; %dzp variance

filter1(23) = dVp1 v; %dVp variance

filter1(24) = dthetap1 v; %dthetap variance

filter1(25) = dphip1 v; %dphip variance

filter1(26) = m1 v; %Measurement noise covariance

filter1(27) = W u;

filter1(28) = W v;

filter1(29) = W w;

%EPF−B

filter2(1) = xp2; %x

filter2(2) = yp2; %y

filter2(3) = zp2; %z

filter2(4) = Vp2; %V

filter2(5) = thetap2; %

filter2(6) = phip2;

filter2(7) = dxp2;

filter2(8) = dyp2;

filter2(9) = dzp2;

filter2(10) = dVp2;

filter2(11) = dthetap2;

filter2(12) = dphip2;

filter2(13) = p2 num;

filter2(14) = xp2 v; %x variance

filter2(15) = yp2 v; %y variance

filter2(16) = zp2 v; %z variance

218

filter2(17) = Vp2 v; %V variance

filter2(18) = thetap2 v; %theta variance

filter2(19) = phip2 v; %phi variance

filter2(20) = dxp2 v; %dxp variance

filter2(21) = dyp2 v; %dyp variance

filter2(22) = dzp2 v; %dzp variance

filter2(23) = dVp2 v; %dVp variance

filter2(24) = dthetap2 v; %dthetap variance

filter2(25) = dphip2 v; %dphip variance

filter2(26) = m2 v; %Measurement noise covariance

filter2(27) = W up;

filter2(28) = W vp;

filter2(29) = W s;

filter2(30) = W up dot;

filter2(31) = W vp dot;

err=0; %Number of weight discrepancy crashes

%Preallocation

%sim T G cent=zeros(params(1),12,sim run);

sim O G cent=zeros(params(1),6,sim run);

sim P G S=zeros(params(1),15,sim run);

sim C1 G cent=zeros(params(1),9,sim run);

sim P2 G S=zeros(params(1),15,sim run);

sim P2 G S part u=zeros(p2 num,15,params(1),sim run);

sim P2 P O part=zeros(p2 num,5,params(1),sim run);

sim P2 P W=zeros(params(1),p2 num,sim run);

sim C2 G cent=zeros(params(1),9,sim run);

c=1;

while c<=sim run

219

[T G cent, T P cent, O G cent, P G S, P2 G S, P2 G S part u,...

P2 P O part, P2 P W, C1 G cent, C2 G cent, flag] =...

EPF B Function Final(params, target, obs, filter1, filter2,...

correction);

%Convert to degrees

if flag == 0

T G cent(:,[5,6,11,12])=rad2deg(T G cent(:,[5,6,11,12]));

P G S(:,[5,6,11,12])=rad2deg(P G S(:,[5,6,11,12]));

C1 G cent(:,[8,9])=rad2deg(C1 G cent(:,[8,9]));

P2 G S(:,[5,6,11,12])=rad2deg(P2 G S(:,[5,6,11,12]));

C2 G cent(:,[8,9])=rad2deg(C2 G cent(:,[8,9]));

sim T G cent(:,:,c)=T G cent;

sim O G cent(:,:,c)=O G cent;

sim P G S(:,:,c)=P G S;

sim C1 G cent(:,:,c)=C1 G cent;

sim P2 G S(:,:,c)=P2 G S;

sim P2 G S part u(:,:,:,c)=P2 G S part u;

sim P2 P O part(:,:,:,c)=P2 P O part;

sim P2 P W(:,:,c)=P2 P W;

sim C2 G cent(:,:,c)=C2 G cent;

c=c+1;

end

if flag == 1;

message='WEIGHT DISCREPANCY';

err=err+1;

end

c

err

220

end

err

switch sim plot

case 1

fig=1;

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 800]); %[x y width height]

axis equal

xlabel('X');

ylabel('Y');

zlabel('Z');

for i2=4:params(1)

hold on;

scatter3(T G cent(i2,1),T G cent(i2,2),T G cent(i2,3),'b');

scatter3(O G cent(i2,4),O G cent(i2,5),O G cent(i2,6),'g');

scatter3(C1 G cent(i2,1),C1 G cent(i2,2),C1 G cent(i2,3),'m');

scatter3(P G S(i2,1),P G S(i2,2),P G S(i2,3),'r');

scatter3(P2 G S(i2,1),P2 G S(i2,2),P2 G S(i2,3),'r+');

scatter3(C2 G cent(i2,1),C2 G cent(i2,2),C2 G cent(i2,3),'m+');

pause(.1)

end

legend('Target','Measurement','Comparison','Filter',...

'Location','East')

fig=fig+1;

ang red=@(a) atan2(sin(a),cos(a));

for i=4:params(1)

figure(fig);clf;

set(gcf,'position',[680,72, 1152, 906]);

% Plot weighted particle distribution for diagnostic pusposes

221

a=subplot(3,2,1);

stem3(P2 P O part(:,1,i),P2 P O part(:,2,i),P2 P W(i,:),'ro');

hold on; stem3(T P cent(i,1),T P cent(i,2),...

max(P2 P W(i,:)),'k*');

title(a,'U vs V Position Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

a=subplot(3,2,3);

stem(P2 P O part(:,3,i),P2 P W(i,:),'ro');

hold on; stem(T P cent(i,3),max(P2 P W(i,:)),'k*');

title(a,'Z Position Particle Weight');

% daspect([1e−4,1e−2,1]);drawnow;

a=subplot(3,2,5);

stem3(P2 P O part(:,4,i),P2 P O part(:,5,i),P2 P W(i,:),'ro');

hold on; stem3(T P cent(i,4),T P cent(i,5),...

max(P2 P W(i,:)),'k*');

title(a,'U vs V Velocity Particle Weight');

% daspect([1e2,1e2,1e−2]);drawnow;

a=subplot(3,2,2);

stem3(P2 G S part u(:,1,i),P2 G S part u(:,2,i),...

P2 P W(i,:),'ro');

hold on; stem3(T G cent(i,1),T G cent(i,2),...

max(P2 P W(i,:)),'k*');

title(a,'X vs Y Position Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

a=subplot(3,2,4);

stem3(P2 G S part u(:,3,i),P2 G S part u(:,4,i),...

P2 P W(i,:),'ro');

hold on; stem3(T G cent(i,3),T G cent(i,4),...

max(P2 P W(i,:)),'k*');

title(a,'Z Position Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

222

a=subplot(3,2,6);

stem3(ang red(P2 G S part u(:,5,i)),...

ang red(P2 G S part u(:,6,i)),P2 P W(i,:),'ro');

hold on; stem3(ang red(T G cent(i,3)),...

ang red(T G cent(i,4)),max(P2 P W(i,:)),'k*');

title(a,'X vs Y Velocity Particle Weight');

pause();

end

for i=4:params(1)

%Weight Scatter Plots

figure(fig);clf;

set(gcf,'position',[0, 0, 800, 1200]);

a=subplot(3,2,1);

stem3(P2 P O part(:,1,i),P2 P O part(:,2,i),...

P2 P W(i,:),'ro');

hold on; stem3(T P cent(i,1),T P cent(i,2),...

max(P2 P W(i,:)),'k*');

title(a,'U vs V Position Particle Weight');

xlabel(a,'u');ylabel(a,'v');

a=subplot(3,2,3);

stem(P2 P O part(:,3,i),P2 P W(i,:),'ro');

hold on; stem(T P cent(i,3),max(P2 P W(i,:)),'k*');

title(a,'W Position Particle Weight');

xlabel(a,'looming');

a=subplot(3,2,5);

stem3(P2 P O part(:,4,i),P2 P O part(:,5,i),...

P2 P W(i,:),'ro');

hold on; stem3(T P cent(i,4),T P cent(i,5),...

223

max(P2 P W(i,:)),'k*');

title(a,'U vs V Velocity Particle Weight');

xlabel(a,'u d o t');ylabel(a,'v d o t');

a=subplot(3,2,2);

temp r=T G cent(i,1:3).'/norm(T G cent(i,1:3));

stem(P2 G S part u(:,1:3,i)*temp r,P2 P W(i,:),'ro');

hold on; stem(T G cent(i,1:3)*temp r,max(P2 P W(i,:)),'k*');

title(a,'Position Particle Weight');

xlabel(a,'r');

a=subplot(3,2,4);

stem(P2 G S part u(:,4,i),P2 P W(i,:),'ro');

hold on; stem(T G cent(i,4),max(P2 P W(i,:)),'k*');

title(a,'Velocity Particle Weight');

xlabel(a,'V');

a=subplot(3,2,6);

stem3(ang red(P2 G S part u(:,5,i)),...

ang red(P2 G S part u(:,6,i)),P2 P W(i,:),'ro');

hold on; stem3(ang red(T G cent(i,5)),...

ang red(T G cent(i,6)),max(P2 P W(i,:)),'k*');

title(a,'X vs Y Velocity Particle Weight');

xlabel(a,'\theta');ylabel(a,'\phi');

pause(.1);

end

%Comparison of States

time=zeros(params(1),1);

for i2=3:params(1)

time(i2,1)=i2;

end

224

%Positions

fig=fig+1;

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(3,1,1);

plot(time,T G cent(:,1),'b',...

time,P G S(:,1),'r',...

time,P2 G S(:,1),'r:',...

time,C1 G cent(:,1),'g',...

time,C2 G cent(:,1),'g:');

legend('Target','Filter 1','Filter 2','Comparison 1',...

'Comparison 2','Location','SouthEast')

title(a,'X Position');

b=subplot(3,1,2);

plot(time,T G cent(:,2),'b',...

time,P G S(:,2),'r',...

time,P2 G S(:,2),'r:',...

time,C1 G cent(:,2),'g',...

time,C2 G cent(:,2),'g:');

legend('Target','Filter 1','Filter 2','Comparison 1',...

'Comparison 2','Location','SouthEast')

title(b,'Y Position');

c=subplot(3,1,3);

plot(time,T G cent(:,3),'b',...

time,P G S(:,3),'r',...

time,P2 G S(:,3),'r:',...

time,C1 G cent(:,3),'g',...

time,C2 G cent(:,3),'g:');

legend('Target','Filter 1','Filter 2','Comparison 1',...

225

'Comparison 2','Location','SouthEast')

title(c,'Z Position');

fig=fig+1;

%Velocity Magintude and headings

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(3,1,1);

plot(time,T G cent(:,4),'b',...

time,P G S(:,4),'r',...

time,P2 G S(:,4),'r:',...

time,C1 G cent(:,7),'g',...

time,C2 G cent(:,7),'g:');

legend('Target','Filter 1','Filter 2','Comparison 1',...

'Comparison 2','Location','SouthEast')

title(a,'Velocity Magnitude');

b=subplot(3,1,2);

plot(time,(T G cent(:,5)),'b',...

time,(P G S(:,5)),'r',...

time,(P2 G S(:,5)),'r:',...

time,(C1 G cent(:,8)),'g',...

time,(C2 G cent(:,8)),'g:');

legend('Target','Filter 1','Filter 2','Comparison 1',...

'Comparison 2','Location','SouthEast')

title(b,'Theta Heading');

c=subplot(3,1,3);

plot(time,(T G cent(:,6)),'b',...

time,(P G S(:,6)),'r',...

time,(P2 G S(:,6)),'r:',...

time,(C1 G cent(:,9)),'g',...

226

time,(C2 G cent(:,9)),'g:');

legend('Target','Filter 1','Filter 2','Comparison 1',...

'Comparison 2','Location','SouthEast')

title(c,'Phi Heading');

fig=fig+1;

otherwise

message='WILL NOT PLOT, MULTIPLE SIMULATION RUNS';

err

%% Calculate performace abilities

%%NOTE: Although distance and V errors are absolute, heading errors

%can only be up to 180 degrees off for both phi and theta (ie. you

%are pointinig in the complete opposite direction. Theta is

%already between 0 and 180, so aboslute errors may be taken. Phi

%though must be adjusted so that all errors are between 0 and 180

%(ex. an 'error' of 350 is really only an error of 10

%Preallocate

error m f=zeros(params(1),4);

error m c=zeros(params(1),4);

vec sim P G S=zeros(params(1),4);

vec sim C1 G cent=zeros(params(1),4);

%'Best' Values for filter and comparison

range index=solution range*sim run;

for i=2:params(1)

for i2=1:sim run

%Angle Adjustment

phi=sim P2 G S(i,6,i2);

if (phi > 360)

227

mult=floor(phi/(360));

phi=phi−mult*360;

end

if (phi < −360)

mult=floor(phi/(−360));

phi=phi+mult*360;

end

if (phi < 0)

phi=360+phi;

end

sim P2 G S(i,6,i2)=abs(phi);

theta=sim P2 G S(i,5,i2);

theta=wrapTo2Pi(theta);

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

sim P2 G S(i,5,i2)=theta;

%Create variable vectors

t dist=sqrt(sim T G cent(i,1,i2)ˆ2+...

sim T G cent(i,2,i2)ˆ2+sim T G cent(i,2,i2)ˆ2);

f dist=sqrt(sim P G S(i,1,i2)ˆ2+sim P G S(i,2,i2)ˆ2+...

sim P G S(i,2,i2)ˆ2);

c dist=sqrt(sim C1 G cent(i,1,i2)ˆ2+...

sim C1 G cent(i,2,i2)ˆ2+sim C1 G cent(i,2,i2)ˆ2);

f2 dist=sqrt(sim P2 G S(i,1,i2)ˆ2+...

sim P2 G S(i,2,i2)ˆ2+sim P2 G S(i,2,i2)ˆ2);

228

c2 dist=sqrt(sim C2 G cent(i,1,i2)ˆ2+...

sim C2 G cent(i,2,i2)ˆ2+sim C2 G cent(i,2,i2)ˆ2);

vec sim P G S(i2,1)=abs(f dist−t dist);

vec sim P G S(i2,[2,3,4])=abs(sim P G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim C1 G cent(i2,1)=abs(c dist−t dist);

vec sim C1 G cent(i2,[2,3,4])=...

abs(sim C1 G cent(i,[7,8,9])−...

sim T G cent(i,[4,5,6],i2));

vec sim P2 G S(i2,1)=abs(f2 dist−t dist);

vec sim P2 G S(i2,[2,3,4])=abs(sim P2 G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim C2 G cent(i2,1)=abs(c2 dist−t dist);

vec sim C2 G cent(i2,[2,3,4])=...

abs(sim C2 G cent(i,[7,8,9],i2)−...

sim T G cent(i,[4,5,6],i2));

%Phi adjustment

if vec sim P G S(i2,4)>180

vec sim P G S(i2,4)=360−vec sim P G S(i2,4);

end

if vec sim C1 G cent(i2,4)>180

vec sim C1 G cent(i2,4)=360−vec sim C1 G cent(i2,4);

end

if vec sim P2 G S(i2,4)>180

vec sim P2 G S(i2,4)=360−vec sim P2 G S(i2,4);

end

229

if vec sim C2 G cent(i2,4)>180

vec sim C2 G cent(i2,4)=360−vec sim C2 G cent(i2,4);

end

end

svec sim P G S=sort(vec sim P G S,1);

svec sim C1 G cent=sort(vec sim C1 G cent,1);

error b f(i,:)=svec sim P G S(range index,:);

error b c(i,:)=svec sim C1 G cent(range index,:);

svec sim P2 G S=sort(vec sim P2 G S,1);

svec sim C2 G cent=sort(vec sim C2 G cent,1);

error b f2(i,:)=svec sim P2 G S(range index,:);

error b c2(i,:)=svec sim C2 G cent(range index,:);

end

%Mean or average error values for filter and comparison

for i=2:params(1)

for i2=1:sim run

%Create variable vectors

t dist=sqrt(sim T G cent(i,1,i2)ˆ2+...

sim T G cent(i,2,i2)ˆ2+sim T G cent(i,3,i2)ˆ2);

f dist=sqrt(sim P G S(i,1,i2)ˆ2+sim P G S(i,2,i2)ˆ2+...

sim P G S(i,3,i2)ˆ2);

c dist=sqrt(sim C1 G cent(i,1,i2)ˆ2+...

sim C1 G cent(i,2,i2)ˆ2+sim C1 G cent(i,3,i2)ˆ2);

f2 dist=sqrt(sim P2 G S(i,1,i2)ˆ2+sim P2 G S(i,2,i2)ˆ2+...

sim P2 G S(i,3,i2)ˆ2);

c2 dist=sqrt(sim C2 G cent(i,1,i2)ˆ2+...

sim C2 G cent(i,2,i2)ˆ2+sim C2 G cent(i,3,i2)ˆ2);

230

vec sim P G S(i2,1)=abs(f dist−t dist);

vec sim P G S(i2,[2,3,4])=abs(sim P G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim C1 G cent(i2,1)=abs(c dist−t dist);

vec sim C1 G cent(i2,[2,3,4])=...

abs(sim C1 G cent(i,[7,8,9],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim P2 G S(i2,1)=abs(f2 dist−t dist);

vec sim P2 G S(i2,[2,3,4])=abs(sim P2 G S(i,[4,5,6],i2)−...

sim T G cent(i,[4,5,6],i2));

vec sim C2 G cent(i2,1)=abs(c2 dist−t dist);

vec sim C2 G cent(i2,[2,3,4])=...

abs(sim C2 G cent(i,[7,8,9],i2)−...

sim T G cent(i,[4,5,6],i2));

if vec sim P G S(i2,4)>180

vec sim P G S(i2,4)=360−vec sim P G S(i2,4);

end

if vec sim C1 G cent(i2,4)>180

vec sim C1 G cent(i2,4)=360−vec sim C1 G cent(i2,4);

end

if vec sim P2 G S(i2,4)>180

vec sim P2 G S(i2,4)=360−vec sim P2 G S(i2,4);

end

if vec sim C2 G cent(i2,4)>180

vec sim C2 G cent(i2,4)=360−vec sim C2 G cent(i2,4);

end

end

231

error m f(i,1)=mean(vec sim P G S(:,1));

error m f(i,2)=mean(vec sim P G S(:,2));

error m f(i,3)=mean(vec sim P G S(:,3));

error m f(i,4)=mean(vec sim P G S(:,4));

error m c(i,1)=mean(vec sim C1 G cent(:,1));

error m c(i,2)=mean(vec sim C1 G cent(:,2));

error m c(i,3)=mean(vec sim C1 G cent(:,3));

error m c(i,4)=mean(vec sim C1 G cent(:,4));

error m f2(i,1)=mean(vec sim P2 G S(:,1));

error m f2(i,2)=mean(vec sim P2 G S(:,2));

error m f2(i,3)=mean(vec sim P2 G S(:,3));

error m f2(i,4)=mean(vec sim P2 G S(:,4));

error m c2(i,1)=mean(vec sim C2 G cent(:,1));

error m c2(i,2)=mean(vec sim C2 G cent(:,2));

error m c2(i,3)=mean(vec sim C2 G cent(:,3));

error m c2(i,4)=mean(vec sim C2 G cent(:,4));

end

time=zeros(params(1),1);

for i2=2:params(1)

time(i2,1)=i2;

end

fig=1;

%TER

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(4,1,1);

plot(time,error b f(:,1),'m',...

232

time,error b f2(:,1),'r:',...

time,error b c(:,1),'g',...

time,error b c2(:,1),'g:');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(a,'Distance Error');

xlabel(a,'Time Step');

ylabel(a,'Error');

b=subplot(4,1,2);

plot(time,error b f(:,2),'m',...

time,error b f2(:,2),'r:',...

time,error b c(:,2),'g',...

time,error b c2(:,2),'g:',...

time,T G cent(:,4),'b');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(b,'Velocity Error');

xlabel(b,'Time Step');

ylabel(b,'Error');

c=subplot(4,1,3);

plot(time,error b f(:,3),'m',...

time,error b f2(:,3),'r:',...

time,error b c(:,3),'g',...

time,error b c2(:,3),'g:',...

time,T G cent(:,5),'b');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(c,'Theta Heading Error');

xlabel(c,'Time Step');

233

ylabel(c,'Error (Deg)');

d=subplot(4,1,4);

plot(time,error b f(:,4),'m',...

time,error b f2(:,4),'r:',...

time,error b c(:,4),'g',...

time,error b c2(:,4),'g:',...

time,T G cent(:,6),'b');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(d,'Phi Heading Error');

xlabel(d,'Time Step');

ylabel(d,'Error (Deg)');

fig=fig+1;

%MAE

hfig=figure(fig);

set(hfig,'Position',[0, 0, 800, 1200]); %[x y width height]

a=subplot(4,1,1);

plot(time,error m f(:,1),'m',...

time,error m f2(:,1),'r:',...

time,error m c(:,1),'g',...

time,error m c2(:,1),'g:');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(a,'Distance Error');

xlabel(a,'Time Step');

ylabel(a,'Error');

b=subplot(4,1,2);

plot(time,error m f(:,2),'m',...

time,error m f2(:,2),'r:',...

234

time,error m c(:,2),'g',...

time,error m c2(:,2),'g:',...

time,T G cent(:,4),'b');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(b,'Velocity Error');

xlabel(b,'Time Step');

ylabel(b,'Error');

c=subplot(4,1,3);

plot(time,error m f(:,3),'m',...

time,error m f2(:,3),'r:',...

time,error m c(:,3),'g',...

time,error m c2(:,3),'g:',...

time,T G cent(:,5),'b');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(c,'Theta Heading Error');

xlabel(c,'Time Step');

ylabel(c,'Error (Deg)');

d=subplot(4,1,4);

plot(time,error m f(:,4),'m',...

time,error m f2(:,4),'r:',...

time,error m c(:,4),'g',...

time,error m c2(:,4),'g:',...

time,T G cent(:,6),'b');

legend('Filter 1','Filter 2','Comparison 1','Comparison 2',...

'Target','Location','North','Orientation','horizontal')

title(d,'Phi Heading Error');

xlabel(d,'Time Step');

ylabel(d,'Error (Deg)');

235

fig=fig+1;

%Final 50 step metrics

best error c=mean(error t c(params(1)−50:params(1),:))

best error c=mean(error t c2(params(1)−50:params(1),:))

best error f=mean(error t f(params(1)−50:params(1),:))

best error f=mean(error t f2(params(1)−50:params(1),:))

%Final 50 step metrics

mean error c=mean(error m c(params(1)−50:params(1),:))

mean error c=mean(error m c2(params(1)−50:params(1),:))

mean error f=mean(error m f(params(1)−50:params(1),:))

mean error f=mean(error m f2(params(1)−50:params(1),:))

end

A.5.2 EPF B Function Final.

function [T G cent, T P cent, O G cent, P G S, P2 G S, P2 G S part u,...

P2 P O part, P2 P W, L1 G cent, L2 G cent, flag] =...

EPF B Function Final(params, target, obs, filter1, filter2, correction)

%% This function is Particle Filter A, allowing for multiple scenarios or

%% simulation runs. Inputs are contained within a separate .mfile that

%% executes this file.

%% Initial conditions and setup

rng('shuffle') %Shuffle random numbers

%System Parameters

T = params(1); %Number of iterations

dt = params(2); %Time step

f = params(3); %Focal Length

flag=0;

236

correct=correction;

%Rotation matrix between global and camera frames

Rot y=@(a) [cos(a), 0, −sin(a); 0,1,0; sin(a), 0, cos(a)];

Rot x=@(a) [1,0,0;0,cos(a), −sin(a); 0,sin(a), cos(a)];

Rot z=@(a) [cos(a),−sin(a),0;sin(a), cos(a),0;0,0,1];

PlotDCM=@(A,O) plot3(cumsum([O(1),A(1,1)]),cumsum([O(2),A(2,1)]),...

cumsum([O(3),A(3,1)]),'r−',...

cumsum([O(1),A(1,2)]),cumsum([O(2),A(2,2)]),cumsum([O(3),A(3,2)]),'g−',...

cumsum([O(1),A(1,3)]),cumsum([O(2),A(2,3)]),cumsum([O(3),A(3,3)]),'b−',...

'linewidth',5);

ang red=@(a) atan2(sin(a),cos(a));

%% Target Parameters

%Truth conditions, the inital conditions of the centroid

x = target(1);

y = target(2);

z = target(3);

V = target(4);

theta = deg2rad(target(5));

phi = deg2rad(target(6));

dx = target(7);

dy = target(8);

dz = target(9);

dV = target(10);

dtheta = deg2rad(target(11));

dphi = deg2rad(target(12));

xdot = target(13);

ydot = target(14);

zdot = target(15);

T G cent(1,:)=[x y z V theta phi dx dy dz dV dtheta dphi xdot ydot zdot];

237

%Process Noise

TS V(1)=target(16);

TS V(2)=target(17);

TS V(3)=target(18);

%Preallocation

T C cent=zeros(T,12);

T G Rotdata=zeros(T,3);

T RotG2C=zeros(3,3,T);

T RotC2G=zeros(3,3,T);

T P cent=zeros(T,5);

%% Measurement conditions

%Initial point locations (for a cube), based of T centroid

O G point a=[T G cent(1)−.5 T G cent(2)−.5 T G cent(3)−.5];

O G point b=[T G cent(1)+.5 T G cent(2)−.5 T G cent(3)−.5];

O G point c=[T G cent(1)−.5 T G cent(2)+.5 T G cent(3)−.5];

O G point d=[T G cent(1)−.5 T G cent(2)−.5 T G cent(3)+.5];

O G point e=[T G cent(1)−.5 T G cent(2)+.5 T G cent(3)+.5];

O G point f=[T G cent(1)+.5 T G cent(2)−.5 T G cent(3)+.5];

O G point g=[T G cent(1)+.5 T G cent(2)+.5 T G cent(3)−.5];

O G point h=[T G cent(1)+.5 T G cent(2)+.5 T G cent(3)+.5];

%Form the initial cube based of points

O G points=[O G point a;O G point b;O G point f;O G point h;...

O G point g;O G point c;O G point a;O G point d;...

O G point e;O G point h;O G point f;O G point d;...

O G point e;O G point c;O G point g;O G point b];

%Number of points

O num=16;

238

%Preallocation

O G cent=zeros(T,6);

O C cent=zeros(T,6);

O RotG2C=zeros(3,3,T);

O C points=zeros(O num,3,T);

O P points=zeros(O num,2,T);

O P cent=zeros(T,5);

%Measurement noise covariances

O V M(1) = obs(1);

O V M(2) = obs(2);

O V M(3) = obs(3);

%Match inital conditions

O G cent(1,:)=[T G cent(1,[1,2,3]), T G cent(1,[1,2,3])];

%% Particle A Parameters

%Initial conditions

xp1 = filter1(1);

yp1 = filter1(2);

zp1 = filter1(3);

Vp1 = filter1(4);

thetap1 = deg2rad(filter1(5));

phip1 = deg2rad(filter1(6));

dxp1 = filter1(7);

dyp1 = filter1(8);

dzp1 = filter1(9);

dVp1 = filter1(10);

dthetap1 = deg2rad(filter1(11));

dphip1 = deg2rad(filter1(12));

239

xdotp1 = Vp1*sin(thetap1)*cos(phip1)*dt;

ydotp1 = Vp1*cos(thetap1)*dt;

zdotp1 = Vp1*sin(thetap1)*sin(phip1)*dt;

P G S(1,:)=[xp1 yp1 zp1 Vp1 thetap1 phip1 dxp1 dyp1 dzp1 dVp1 dthetap1...

dphip1 xdotp1 ydotp1 zdotp1];

%Number of particles

P num = filter1(13);

%Variances

P V S(1) = filter1(14); %x variance

P V S(2) = filter1(15); %y variance

P V S(3) = filter1(16); %z variance

P V S(4) = filter1(17); %V variance

P V S(5) = filter1(18); %theta variance

P V S(6) = filter1(19); %phi varaince

P V S(7) = filter1(20); %dxp

P V S(8) = filter1(21); %dyp

P V S(9) = filter1(22); %dzp

P V S(10) = filter1(23); %dVp

P V S(11) = filter1(24); %dthetap

P V S(12) = filter1(25); %dphip

P V M = filter1(26); %Measurement noise covariance

%Weighing matrix

W u = filter1(27); %u observation weight

W v = filter1(28); %v observation weight

W w = filter1(29); %w observation weight

240

P W = [W u 0 0; 0 W v 0; 0 0 W w];

%Initial particles for global state

P G S part=zeros(P num,15,T); %Preallocation of particle matrix

for i2=1:P num

P G S part(i2,:,1)=[P G S(1,1)+sqrt(P V S(1))*randn;...

P G S(1,2)+sqrt(P V S(2))*randn;...

P G S(1,3)+sqrt(P V S(3))*randn;...

P G S(1,4)+sqrt(P V S(4))*randn;...

P G S(1,5)+sqrt(P V S(5))*randn;...

P G S(1,6)+sqrt(P V S(6))*randn;...

P G S(1,7)+sqrt(P V S(7))*randn;...

P G S(1,8)+sqrt(P V S(8))*randn;...

P G S(1,9)+sqrt(P V S(9))*randn;...

P G S(1,10)+sqrt(P V S(10))*randn;...

P G S(1,11)+sqrt(P V S(11))*randn;...

P G S(1,12)+sqrt(P V S(12))*randn;...

P G S part(i2,10,1);...

P G S part(i2,11,1);...

P G S part(i2,12,1)];

end

%Preallocation

P G S part u=zeros(P num,15,T);

P RotG2C=zeros(3,3,T);

P C O part=zeros(P num,3,T);

P P O diff=zeros(P num,3,T);

P P W=zeros(T,P num);

P P O rawW=zeros(T,P num);

P P get=zeros(T,P num);

241

%% Particle B conditions (Up,Vp,Wp)

%Initial conditions

xp2 = filter2(1);

yp2 = filter2(2);

zp2 = filter2(3);

Vp2 = filter2(4);

thetap2 = deg2rad(filter2(5));

phip2 = deg2rad(filter2(6));

dxp2 = filter2(7);

dyp2 = filter2(8);

dzp2 = filter2(9);

dVp2 = filter2(10);

dthetap2 = deg2rad(filter2(11));

dphip2 = deg2rad(filter2(12));

xdotp2 = Vp2*sin(thetap2)*cos(phip2)*dt;

ydotp2 = Vp2*cos(thetap2)*dt;

zdotp2 = Vp2*sin(thetap2)*sin(phip2)*dt;

P2 G S(1,:)=[xp2 yp2 zp2 Vp2 thetap2 phip2 dxp2 dyp2 dzp2 dVp2 dthetap2...

dphip2 xdotp2 ydotp2 zdotp2];

%Number of particles

P2 num = filter2(13);

%Variances

P2 V S(1) = filter2(14); %x variance

P2 V S(2) = filter2(15); %y variance

P2 V S(3) = filter2(16); %z variance

P2 V S(4) = filter2(17); %V variance

P2 V S(5) = filter2(18); %theta variance

242

P2 V S(6) = filter2(19); %phi varaince

P2 V S(7) = filter2(20); %dxp

P2 V S(8) = filter2(21); %dyp

P2 V S(9) = filter2(22); %dzp

P2 V S(10) = filter2(23); %dVp

P2 V S(11) = filter2(24); %dthetap

P2 V S(12) = filter2(25); %dphip

P2 V M = filter2(26); %Measurement noise covariance

%Weight matrix

W u = filter2(27); %u observation weight

W v = filter2(28); %v observation weight

W s = filter2(29); %s observation weight

W udot = filter2(30); %wdot observation weight

W vdot = filter2(31);

P2 W = [W u 0 0 0 0; 0 W v 0 0 0; 0 0 W s 0 0; 0 0 0 W udot 0;...

0 0 0 0 W vdot];

P2 W=[10 0 0 0 0;...

0 10 0 0 0;...

0 0 3 0 0;...

0 0 0 4 0;...

0 0 0 0 4];

P2 W=diag([10*ones(1,5)]);

%Initial particles for global state

P2 G S part=zeros(P2 num,15,T); %Preallocation of particle matrix

for i2=1:P2 num

P2 G S part(i2,:,1)=[P2 G S(1,1)+sqrt(P2 V S(1))*randn;...

P2 G S(1,2)+sqrt(P2 V S(2))*randn;...

243

P2 G S(1,3)+sqrt(P2 V S(3))*randn;...

P2 G S(1,4)+sqrt(P2 V S(4))*randn;...

P2 G S(1,5)+sqrt(P2 V S(5))*randn;...

P2 G S(1,6)+sqrt(P2 V S(6))*randn;...

P2 G S(1,7)+sqrt(P2 V S(7))*randn;...

P2 G S(1,8)+sqrt(P2 V S(8))*randn;...

P2 G S(1,9)+sqrt(P2 V S(9))*randn;...

P2 G S(1,10)+sqrt(P2 V S(10))*randn;...

P2 G S(1,11)+sqrt(P2 V S(11))*randn;...

P2 G S(1,12)+sqrt(P2 V S(12))*randn;...

P2 G S part(i2,10,1);...

P2 G S part(i2,11,1);...

P2 G S part(i2,12,1)];

end

%Preallocation

P2 G S part u=zeros(P2 num,15,T);

P2 RotG2C=zeros(3,3,T);

P2 C O part=zeros(P2 num,6,T);

P2 P O part=zeros(P2 num,5,T);

P2 P O diff=zeros(P2 num,5,T);

P2 P W=zeros(T,P2 num);

%% SLMA

L1 G cent=zeros(T,9);

L1 G cent(1,[1,2,3]) = O G cent(1,[1,2,3]);

L1 G cent(1,[4,5,6]) = T G cent(1,[13,14,15]);

L1 G cent(1,[7,8,9]) = T G cent(1,[4,5,6]);

L1 C cent(1,[4,5,6]) = T G cent(1,[13,14,15]);

L1 G cent(1,:)=T G cent(1,[1,2,3,13,14,15,4,5,6]);

%% SLMB

L2 G cent=zeros(T,9);

244

L2 G cent(1,[1,2,3]) = O G cent(1,[1,2,3]);

L2 G cent(1,[4,5,6]) = T G cent(1,[13,14,15]);

L2 G cent(1,[7,8,9]) = T G cent(1,[4,5,6]);

L2 C cent(1,[4,5,6]) = T G cent(1,[13,14,15]);

L2 G cent(1,:)=T G cent(1,[1,2,3,13,14,15,4,5,6]);

L2 P cent = zeros(T,4);

for i=2:T %i=1 is initial conditions

%% Truth Centroid

%Update movement of centroid in global

%Update truth centroid position

%Position values will NOT be future values: the x used here is based

%off of the previous x plus the previous delta x. Thus, delta and dot

%values pertain to the x in the same time step NOT a future x

x=T G cent(i−1,1)+T G cent(i−1,7);

y=T G cent(i−1,2)+T G cent(i−1,8);

z=T G cent(i−1,3)+T G cent(i−1,9);

V=T G cent(i−1,4)+T G cent(i−1,10);

theta=T G cent(i−1,5)+T G cent(i−1,11);

phi=T G cent(i−1,6)+T G cent(i−1,12);

xdot=V*sin(theta)*cos(phi)*dt;

ydot=V*cos(theta)*dt;

zdot=V*sin(theta)*sin(phi)*dt;

V dot=T G cent(i−1,10)/dt;

theta dot=T G cent(i−1,11)/dt;

phi dot=T G cent(i−1,12)/dt;

dx=V*sin(theta)*cos(phi)*dt+...

V dot*sin(theta)*cos(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*cos(phi)*(dtˆ2/2);

245

dy=V*cos(theta)*dt+...

V dot*cos(theta)*(dtˆ2/2)−...

theta dot*V*sin(theta)*(dtˆ2/2);

dz=V*sin(theta)*sin(phi)*dt+...

V dot*sin(theta)*sin(phi)*(dtˆ2/2)+...

phi dot*V*sin(theta)*cos(phi)*(dtˆ2/2);

dV=V dot*dt;

dtheta=theta dot*dt;

dphi=phi dot*dt;

%Add Process Noise

V=V+sqrt(TS V(1))*randn;

theta=theta+sqrt(TS V(2))*randn;

phi=phi+sqrt(TS V(3))*randn;

%New centroid positions

T G cent(i,1)=x;

T G cent(i,2)=y;

T G cent(i,3)=z;

T G cent(i,4)=V;

T G cent(i,5)=theta;

T G cent(i,6)=phi;

T G cent(i,7)=dx;

T G cent(i,8)=dy;

T G cent(i,9)=dz;

T G cent(i,10)=dV;

T G cent(i,11)=dtheta;

T G cent(i,12)=dphi;

T G cent(i,13)=xdot;

246

T G cent(i,14)=ydot;

T G cent(i,15)=zdot;

%Rotate to camera orientation

%States in the camera orientation are u,v,w and dots

%Generate angles and rotation DCM

%Camera angles assume the camera tracks the truth centroid perfectly

T G Rotdata(i,1)=sqrt(T G cent(i,1)ˆ2+T G cent(i,2)ˆ2+T G cent(i,3)ˆ2);

%Pan (phi)

T G Rotdata(i,2)=atan2(T G cent(i,3),T G cent(i,1));

%Tilt, note: tilts from y axis (positive down), so 0 is on y−axis

%(theta)

T G Rotdata(i,3)=acos(T G cent(i,2)/T G Rotdata(i,1));

%Calculate rate of rotation (phi dot), x

T G Rotdata(i,4)=(T G Rotdata(i,2)−T G Rotdata(i−1,2))/dt;

%Calculate rate of tilt (theta dot), y

T G Rotdata(i,5)=(T G Rotdata(i,3)−T G Rotdata(i−1,3))/dt;

%Create DCM based on current rotation angles

T DCM G2C=@(angz) Rot y(angz(1)−pi/2)*Rot x(angz(2)−pi/2)*Rot z(pi/2);

T RotG2C(:,:,i)=T DCM G2C(T G Rotdata(i,[2,3])).';

%Rotate centroid to camera frame

T C cent(i,[1,2,3])=T RotG2C(:,:,i)*T G cent(i,[1,2,3])'; %u,v,w

T C cent(i,[4,5,6])=T RotG2C(:,:,i)*T G cent(i,[13,14,15])'; %dot u v w

%Convert to pixel values

T P cent(i,1)=((T C cent(i,1)/T C cent(i,3)))*f; %u p

T P cent(i,2)=((T C cent(i,2)/T C cent(i,3)))*f; %v p

T P cent(i,3)=(T C cent(i,6)/T C cent(i,3))*f; %w

247

T P cent(i,4)=(T C cent(i,4)/T C cent(i,3))*f; %u pdot

T P cent(i,5)=(T C cent(i,5)/T C cent(i,3))*f; %v pdot

%% Observation Centroid and Points

%Update global point position (CUBE)

for i2=1:O num

O G points(i2,1,i)=O G points(i2,1,i−1)+T G cent(i−1,7);

O G points(i2,2,i)=O G points(i2,2,i−1)+T G cent(i−1,8);

O G points(i2,3,i)=O G points(i2,3,i−1)+T G cent(i−1,9);

end

%Calculate observed centroid based on mean of points

O G cent(i,1)=mean(O G points(:,1,i));

O G cent(i,2)=mean(O G points(:,2,i));

O G cent(i,3)=mean(O G points(:,3,i));

%Rotate to camera orientation (use same cam rot angles as in truth)

%Rotate points to camera orientation

O RotG2C(:,:,i)=T RotG2C(:,:,i);

O noise=[sqrt(O V M(1))*randn; sqrt(O V M(2))*randn;...

sqrt(O V M(3))*randn];

for i2=1:O num

O C points(i2,:,i)=O RotG2C(:,:,i)*O G points(i2,:,i)'+O noise;

end

%Calculate observed centroid (in camera frame)

O C cent(i,1)=mean(O C points(:,1,i));

O C cent(i,2)=mean(O C points(:,2,i));

O C cent(i,3)=mean(O C points(:,3,i));

%Calculate u,v,w velocities (difference between the two positions)

248

%Assume all points move with the same velocites, so we use the truth

%velocites, u v w dot

O C cent(i,[4,5,6])= T C cent(i,[4,5,6]);

T RotC2G(:,:,i)=transpose(T RotG2C(:,:,i));

O G cent(i,[4,5,6])=T RotC2G(:,:,i)*O C cent(i,[1,2,3])';

%Calculate and convert to pixel values

%Calculate u and v pixel values for each point

for i2=1:O num

O P points(i2,1,i)=(O C points(i2,1,i)/O C points(i2,3,i))*f; %u p

O P points(i2,2,i)=(O C points(i2,2,i)/O C points(i2,3,i))*f; %v p

end

%Calculate s, u dot, v dot using least mean squares method

state=[O P points(:,1,i−1)' O P points(:,2,i−1)';...

zeros(1,O num) dt*ones(1,O num);...

dt*ones(1,O num) zeros(1,O num)];

b=[O P points(:,1,i)' O P points(:,2,i)'];

% A=b*state'*pinv(state*state');

A=b*(state'*state)ˆ−1*state'*state;

%Create pixel 'centroid'

O P cent(i,1)=mean(O P points(:,1,i)); %u p

O P cent(i,2)=mean(O P points(:,2,i)); %v p

O P cent(i,3)=A(1,1); %s

O P cent(i,4)=A(1,2); %u p dot

O P cent(i,5)=A(1,3); %v p dot

%% Particle Centroid and Points (U,V,W)

249

%Update particles (state and observations)

%As with the Truth cent, take in the previous time step values

for i2=1:P num

%Update state

x=P G S part(i2,1,i−1)+P G S part(i2,7,i−1);

y=P G S part(i2,2,i−1)+P G S part(i2,8,i−1);

z=P G S part(i2,3,i−1)+P G S part(i2,9,i−1);

V=P G S part(i2,4,i−1)+P G S part(i2,10,i−1)+sqrt(P V S(4))*randn;

theta=P G S part(i2,5,i−1)+P G S part(i2,11,i−1)+...

sqrt(P V S(5))*randn;

phi=P G S part(i2,6,i−1)+P G S part(i2,12,i−1)+...

sqrt(P V S(6))*randn;

%Angle adjustment: ensure V is not negative, angles in proper range

if(V<0)

V=abs(V);

end

%Fix and reduce angles

theta=wrapTo2Pi(theta);

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

xdot=V*sin(theta)*cos(phi)*dt;

ydot=V*cos(theta)*dt;

zdot=V*sin(theta)*sin(phi)*dt;

V dot=P G S part(i2,10,i)/dt;

theta dot=P G S part(i2,11,i)/dt;

250

phi dot=P G S part(i2,12,i)/dt;

dx=V*sin(theta)*cos(phi)*dt+...

V dot*sin(theta)*cos(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*cos(phi)*(dtˆ2/2)+...

−phi dot*V*sin(theta)*sin(phi)*(dtˆ2/2);

dy=V*cos(theta)*dt+...

V dot*cos(theta)*(dtˆ2/2)−...

theta dot*V*sin(theta)*(dtˆ2/2);

dz=V*sin(theta)*sin(phi)*dt+...

V dot*sin(theta)*sin(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*sin(phi)*(dtˆ2/2)+...

phi dot*V*sin(theta)*cos(phi)*(dtˆ2/2);

dV=V dot*dt;

dtheta=theta dot*dt;

dphi=phi dot*dt;

%New centroid positions

P G S part u(i2,1,i)=x;

P G S part u(i2,2,i)=y;

P G S part u(i2,3,i)=z;

P G S part u(i2,4,i)=V;

P G S part u(i2,5,i)=theta;

P G S part u(i2,6,i)=phi;

P G S part u(i2,7,i)=dx;

P G S part u(i2,8,i)=dy;

P G S part u(i2,9,i)=dz;

P G S part u(i2,10,i)=dV;

P G S part u(i2,11,i)=dtheta;

251

P G S part u(i2,12,i)=dphi;

P G S part u(i2,13,i)=xdot;

P G S part u(i2,14,i)=ydot;

P G S part u(i2,15,i)=zdot;

%Observation Update (ie. what we think the camera will see based on

%the states)

%Rotate to camera frame (use same angles as in Truth)

P RotG2C(:,:,i)=T RotG2C(:,:,i);

P C O part(i2,[1,2,3],i)=P RotG2C(:,:,i)*...

P G S part u(i2,[1,2,3],i)';

%Calculate difference between observation (measurement) and filter

%predicition

P P O diff(i2,:,i)=O C cent(i,[1,2,3])−P C O part(i2,:,i);

%Weights to be used

P P O rawW(i,i2)=P P O diff(i2,:,i)*P W*P P O diff(i2,:,i)';

%Weight particles

P P W(i,i2)=(1/sqrt(2*pi*P V M))*exp(−(P P O diff(i2,:,i)*P W*...

P P O diff(i2,:,i)')/(2*P V M));

end

%Normalize to form a probability distribution (ie. sums to 1)

P P W(i,:)=P P W(i,:)./sum(P P W(i,:));

%Resampling: from this new distribution, we randomly resample from it

%to generate new estimate particles

for i2=1:P num

P P get(i,i2)=find(rand<=cumsum(P P W(i,:)),1);

P G S part(i2,:,i)=P G S part u(P P get(i,i2),:,i);

252

end

%The final estimate, state, is a metric of the final resampling

P G S(i,:)=mean(P G S part(:,:,i));

%% Particle Centroid and Points (Up,Vp,Wp)

%Select model variation/parameter

%Noise on vector: 1

%Jacobain: 2

%No correction: 0

%Update particles (state and observations)

%As with the Truth cent, take in the previous time step values

switch correct

case 1 %Noise on vector

temp r vec=zeros(1,3);

[temp r vec(1),temp r vec(2),temp r vec(3)] = sph2cart(...

T G Rotdata(i,2),T G Rotdata(i,3),T G Rotdata(i,1));

temp r vec=temp r vec/norm(temp r vec)*7*randn;

% temp r vec = T RotG2C(end,:,i)*7*randn;

temp r vec = T RotG2C(end,:,i);

temp randVtp=[.1*sqrt(P2 V S(4)) 0 0; 0 .1*sqrt(P2 V S(5)) 0;...

0 0 .1*sqrt(P2 V S(6))];

case 2

temp r vec=zeros(1,3); % Prevents any noise being introduced

if i>3

%Retrieve previous estimated global state values, reassign to variables

%for ease of calculation and jacobian generation

V = P2 G S(i−1,4);

theta = P2 G S(i−1,5);

phi = P2 G S(i−1,6);

253

%First Jacobian, uses V, theta, phi, and returns dx, dy, dz

V Jacob1(:,:,i)=[cos(theta)*sin(phi)*dt, −V*sin(theta)*...

sin(phi)*dt, V*cos(theta)*cos(phi)*dt;...

cos(phi)*dt, 0, −V*sin(phi)*dt;...

sin(theta)*sin(phi)*dt, V*cos(theta)*sin(phi)*dt,...

V*cos(phi)*sin(theta)*dt];

%Second Jacobian

w = P2 C S(i−1,3);

V Jacob2(:,:,i)=[0, 0, 1/w; 1/w, 0, 0; 0, 1/w, 0];

%Generate full matrix

V JacobAll(:,:,i) = V Jacob2(:,:,i)*P2 RotG2C(:,:,i−1)*...

V Jacob1(:,:,i);

%Generate variance values, based on eigen values that

%define the amount of correlation between state and

%variable and the vectors that indicate if this

%correlation is increasing

[temp Evec,temp Eval]=eig(V JacobAll(:,:,i).'*...

V JacobAll(:,:,i));

temp randVtp=10*temp Evec*diag(4e−5*(diag(temp Eval)+...

4e−6).ˆ−1);

else

temp Evec(:,1) = [1;0;0];

temp Eval(1,1)=1e−4;

temp Evec(:,2) = [0;1;0];

temp Eval(2,2)=1e−2;

temp Evec(:,3) = [0;0;1];

temp Eval(3,3)=1e−2;

temp randVtp=3*temp Evec*diag(4e−5*(diag(temp Eval)+4e−6).ˆ−1);

end

case 0

temp r vec=zeros(1,3);

254

temp randVtp=[.1*sqrt(P2 V S(4)) 0 0; 0 .1*sqrt(P2 V S(5)) 0;...

0 0 .1*sqrt(P2 V S(6))];

end

for i2=1:P2 num

%Generate variances

temp r vec=temp r vec.*[sqrt(P2 V S(1))*randn,...

sqrt(P2 V S(2))*randn, sqrt(P2 V S(3))*randn];

temp randVtp2=temp randVtp*randn(3,1);

%Update state

x= P2 G S part(i2,1,i−1)+P2 G S part(i2, 7,i−1)+temp r vec(1);

y= P2 G S part(i2,2,i−1)+P2 G S part(i2, 8,i−1)+temp r vec(2);

z= P2 G S part(i2,3,i−1)+P2 G S part(i2, 9,i−1)+temp r vec(3);

V= P2 G S part(i2,4,i−1)+P2 G S part(i2,10,i−1)+...

temp randVtp2(1);

theta=P2 G S part(i2,5,i−1)+P2 G S part(i2,11,i−1)+...

temp randVtp2(2);

phi= P2 G S part(i2,6,i−1)+P2 G S part(i2,12,i−1)+...

temp randVtp2(3);

%Angle adjustment: ensure V is not negative, angles in proper range

if(V<0)

V=abs(V);

end

xdot=V*sin(theta)*cos(phi)*dt;

ydot=V*cos(phi)*dt;

zdot=V*sin(theta)*sin(phi)*dt;

255

V dot=P2 G S part(i2,10,i−1)/dt;

theta dot=P2 G S part(i2,11,i−1)/dt;

phi dot=P2 G S part(i2,12,i−1)/dt;

dx=V*sin(theta)*cos(phi)*dt+...

V dot*sin(theta)*cos(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*cos(phi)*(dtˆ2/2)+...

−phi dot*V*sin(theta)*sin(phi)*(dtˆ2/2);

dy=V*cos(theta)*dt+...

V dot*cos(theta)*(dtˆ2/2)−...

theta dot*V*sin(theta)*(dtˆ2/2);

dz=V*sin(theta)*sin(phi)*dt+...

V dot*sin(theta)*sin(phi)*(dtˆ2/2)+...

theta dot*V*cos(theta)*sin(phi)*(dtˆ2/2)+...

phi dot*V*sin(theta)*cos(phi)*(dtˆ2/2);

dV=V dot*dt;

dtheta=theta dot*dt;

dphi=phi dot*dt;

%New centroid positions

P2 G S part u(i2,1,i)=x;

P2 G S part u(i2,2,i)=y;

P2 G S part u(i2,3,i)=z;

P2 G S part u(i2,4,i)=V;

P2 G S part u(i2,5,i)=theta;

P2 G S part u(i2,6,i)=phi;

P2 G S part u(i2,7,i)=dx;

P2 G S part u(i2,8,i)=dy;

P2 G S part u(i2,9,i)=dz;

256

P2 G S part u(i2,10,i)=dV;

P2 G S part u(i2,11,i)=dtheta;

P2 G S part u(i2,12,i)=dphi;

P2 G S part u(i2,13,i)=xdot;

P2 G S part u(i2,14,i)=ydot;

P2 G S part u(i2,15,i)=zdot;

%Observation Update (ie. what we think the camera will see based on

%the states)

%Rotate to camera frame (use same angles as in Truth)

P2 RotG2C(:,:,i)=T RotG2C(:,:,i);

P2 C O part(i2,[1,2,3],i)=P2 RotG2C(:,:,i)*...

P2 G S part u(i2,[1,2,3],i)';

P2 C O part(i2,[4,5,6],i)=P2 RotG2C(:,:,i)*...

P2 G S part u(i2,[13,14,15],i)';

%Obtain pixel values, u,v,s,udot,vdot, based on camera states

P2 P O part(i2,1,i)=P2 C O part(i2,1,i)/P2 C O part(i2,3,i)*f; %u p

P2 P O part(i2,2,i)=P2 C O part(i2,2,i)/P2 C O part(i2,3,i)*f; %v p

P2 P O part(i2,3,i)=P2 C O part(i2,6,i)/P2 C O part(i2,3,i)*f; %new s

% P2 P O part(i2,3,i)=(−((P2 C O part(i2,1,i)*...

% P2 C O part(i2,6,i))/P2 C O part(i2,3,i)ˆ2)+...

% −((P2 C O part(i2,2,i)*P2 C O part(i2,6,i))/...

% P2 C O part(i2,3,i)ˆ2))/2; %s p

P2 P O part(i2,4,i)=(P2 C O part(i2,4,i)/P2 C O part(i2,3,i))*f;

P2 P O part(i2,5,i)=(P2 C O part(i2,5,i)/P2 C O part(i2,3,i))*f;

%Calculate difference between observed centroid and particle cent

P2 P O diff(i2,:,i)=O P cent(i,:)−P2 P O part(i2,:,i);

P2 P O diff(i2,:,i)=T P cent(i,:)−P2 P O part(i2,:,i);

%Weights to be used

257

P2 P O rawW(i,i2)=P2 P O diff(i2,:,i)*P2 W*P2 P O diff(i2,:,i)';

%Weight particles

P2 P W(i,i2)=(1/sqrt(2*pi*P2 V M))*exp(−(P2 P O diff(i2,:,i)*...

P2 W*P2 P O diff(i2,:,i)')/(2*P2 V M));

end

stop=mean(sum(P2 P W(i,:)));

if stop < 1e−175

stop;

flag=1;

break

end

P2 P O diff(i2,:,i)

%% Plot distribution of weighted particles in real time

%% for diagnostic purposes

figure(72);clf;

set(gcf,'position',[680 72 1152 906]);

a=subplot(3,2,1);

stem3(P2 P O part(:,1,i),P2 P O part(:,2,i),P2 P W(i,:),'ro');

hold on; stem3(T P cent(i,1),T P cent(i,2),max(P2 P W(i,:)),'k*');

title(a,'U vs V Position Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

a=subplot(3,2,3);

stem(P2 P O part(:,3,i),P2 P W(i,:),'ro');

hold on; stem(T P cent(i,3),max(P2 P W(i,:)),'k*');

title(a,'Z Position Particle Weight');

% daspect([1e−4,1e−2,1]);drawnow;

a=subplot(3,2,5);

stem3(P2 P O part(:,4,i),P2 P O part(:,5,i),P2 P W(i,:),'ro');

258

hold on; stem3(T P cent(i,4),T P cent(i,5),max(P2 P W(i,:)),'k*');

title(a,'U vs V Velocity Particle Weight');

% daspect([1e2,1e2,1e−2]);drawnow;

a=subplot(3,2,2);

stem3(P2 G S part u(:,1,i),P2 G S part u(:,2,i),P2 P W(i,:),'ro');

hold on; stem3(T G cent(i,1),T G cent(i,2),max(P2 P W(i,:)),'k*');

title(a,'X vs Y Position Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

a=subplot(3,2,4);

stem(P2 G S part u(:,3,i),P2 P W(i,:),'ro');

hold on; stem(T G cent(i,3),max(P2 P W(i,:)),'k*');

title(a,'Z Position Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

a=subplot(3,2,6);

stem3(ang red(P2 G S part u(:,5,i)),ang red(P2 G S part u(:,6,i)),...

P2 P W(i,:),'ro');

hold on; stem3(ang red(T G cent(i,3)),ang red(T G cent(i,4)),...

max(P2 P W(i,:)),'k*');

title(a,'X vs Y Velocity Particle Weight');

% daspect([1e1,1e1,1e−2]);drawnow;

pause();

%%

if (flag==1)

break

end

% P2 P O diffmean(i,:)=mean(P2 P O diff(:,:,i));

%Normalize to form a probability distribution (ie. sums to 1)

P2 P W(i,:)=P2 P W(i,:)./sum(P2 P W(i,:));

%Resampling: from this new distribution, we randomly resample from it

259

%to generate new estimate particles

for i2=1:P2 num

P2 P get(i,i2)=find(rand<=cumsum(P2 P W(i,:)),1);

P2 G S part(i2,:,i)=P2 G S part u(P2 P get(i,i2),:,i);

end

%The final estimate, state, is a metric of the final resampling

P2 G S(i,:)=mean(P2 G S part(:,:,i));

%Provide P2 C S for variance calculations

P2 C S(i,[1,2,3])=P2 RotG2C(:,:,i)*P2 G S(i,[4,5,6])';

P2 C S(i,[4,5,6])=P2 RotG2C(:,:,i)*P2 G S(i,[10,11,12])';

%% SLMA

L1 C cent(i,1) = O C cent(i−1,1)+L1 C cent(i−1,4)*dt;

L1 C cent(i,2) = O C cent(i−1,2)+L1 C cent(i−1,5)*dt;

L1 C cent(i,3) = O C cent(i−1,3)+L1 C cent(i−1,6)*dt;

%Velocities

L1 C cent(i,4) = (O C cent(i,1)−O C cent(i−1,1))/dt;

L1 C cent(i,5) = (O C cent(i,2)−O C cent(i−1,2))/dt;

L1 C cent(i,6) = (O C cent(i,3)−O C cent(i−1,3))/dt;

%Rotate to global from camera (inverse of DCM)

L1 G cent(i,[1,2,3])=T RotC2G(:,:,i)*L1 C cent(i,[1,2,3])';

L1 G cent(i,4)=(L1 G cent(i,1)−L1 G cent(i−1,1))/dt;

L1 G cent(i,5)=(L1 G cent(i,2)−L1 G cent(i−1,2))/dt;

L1 G cent(i,6)=(L1 G cent(i,3)−L1 G cent(i−1,3))/dt;

260

V = sqrt(L1 G cent(i,4)ˆ2+L1 G cent(i,5)ˆ2+L1 G cent(i,6)ˆ2);

theta = acos(L1 G cent(i,5)/V);

phi = atan2(L1 G cent(i,6),L1 G cent(i,4));

L1 G cent(i,7) = V;

L1 G cent(i,8) = theta;

L1 G cent(i,9) = phi;

%% SLMB

%Update up, vp, s (w)

%Note: normally w=s*scale factor of target, but since the obs points

%are from the edge of the target, this scale factor =1, so it is not

%explicitly stated

%Find u, w, v

L2 C cent(i,1) = (O P cent(i,3)*O P cent(i,1))/f;

L2 C cent(i,2) = (O P cent(i,3)*O P cent(i,2))/f;

L2 C cent(i,3) = sqrt(((−L2 C cent(i,1)−L2 C cent(i,2))*...

L2 C cent(i−1,6))/(2*O P cent(i,3)));

L2 C cent(i,4) = (O P cent(i,3)*O P cent(i,4))/f;

L2 C cent(i,5) = (O P cent(i,3)*O P cent(i,5))/f;

L2 C cent(i,6) = (O P cent(i,3)−O P cent(i−1,3))/dt;

L2 C cent(i,:);

%Rotate to global from camera (inverse of DCM)

L2 G cent(i,[1,2,3])=T RotC2G(:,:,i)*L2 C cent(i,[1,2,3])';

L2 G cent(i,4)=(L2 G cent(i,1)−L2 G cent(i−1,1))/dt;

L2 G cent(i,5)=(L2 G cent(i,2)−L2 G cent(i−1,2))/dt;

L2 G cent(i,6)=(L2 G cent(i,3)−L2 G cent(i−1,3))/dt;

261

V = sqrt(L2 G cent(i,4)ˆ2+L2 G cent(i,5)ˆ2+L2 G cent(i,6)ˆ2);

theta = acos(L2 G cent(i,5)/V);

phi = atan2(L2 G cent(i,6),L2 G cent(i,4));

L2 G cent(i,7) = V;

L2 G cent(i,8) = theta;

L2 G cent(i,9) = phi;

end

%Angle adjustment: ensure V is not negative, angles in proper range

for i=2:T

%Terminate if EPF−B collapses

if(flag==1)

break

end

%Target

T G cent(i,5)=wrapTo2Pi(T G cent(i,5));

T G cent(i,6)=wrapTo2Pi(T G cent(i,6));

if(T G cent(i,4)<0)

T G cent(i,4)=abs(T G cent(i,4));

T G cent(i,6)=wrapTo2Pi(T G cent(i,6)+pi());

T G cent(i,5)=pi()−T G cent(i,5);

end

%Fix and reduce angles

if(T G cent(i,5)>pi())

theta a=T G cent(i,5)−pi();

T G cent(i,5)=pi()−theta a;

T G cent(i,6)=wrapTo2Pi(T G cent(i,6)+pi());

end

262

%EPF−A

%Only need to adjust phi, v is already only absolute and theta has

%already been constrained

%DO NOT USE WRAPTO2PI!!!

phi=P G S(i,6);

if (phi > 2*pi())

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

P G S(i,6)=abs(phi);

%EPF−B

%Only need to adjust phi, v is already only absolute and theta has

%already been constrained

%DO NOT USE WRAPTO2PI!!!

phi=P2 G S(i,6);

if (phi > 2*pi())

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

263

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

P2 G S(i,6)=abs(phi);

%SLMA

%Angle adjustment: ensure V is not negative, angles in proper range

phi=L1 G cent(i,9);

if (phi > 2*pi())

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

L1 G cent(i,9)=abs(phi);

%Fix and reduce angles

theta=L1 G cent(i,8);

theta=wrapTo2Pi(theta);

264

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

L1 G cent(i,8)=theta;

%SLMB

%Angle adjustment: ensure V is not negative, angles in proper range

phi=L2 G cent(i,9);

if (phi > 2*pi())

mult=floor(phi/(2*pi()));

phi=phi−mult*2*pi();

end

if (phi < −2*pi())

mult=floor(phi/(−2*pi()));

phi=phi+mult*2*pi();

end

if (phi < 0)

phi=2*pi()+phi;

end

L2 G cent(i,9)=abs(phi);

%Fix and reduce angles

theta=L2 G cent(i,8);

theta=wrapTo2Pi(theta);

if(theta>pi())

theta a=theta−pi();

theta=pi()−theta a;

end

265

L2 G cent(i,8)=theta;

end

266

Bibliography

[1] “IEEE Conferences on Computer Vision and Pattern Recognition, 2009-2013”. URL
http://ieeexplore.ieee.org/servlet/opac?punumber=1000147.

[2] Arulampalam, M. Sanjeev, Simon Maskell, Neil Gordon, and Tim Clapp. “A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking”. IEEE
Transactions on Signal Processing, 50:174–188, 2002.

[3] Bayes, Thomas and Richard Price. “An Essay towards solving a Problem in the
Doctrine of Chances”. Philosophical Transactions of the Royal Society of London,
53:370–418, 1763. URL http://www.stat.ucla.edu/history/essay.pdf.

[4] Bengtsson, Thomas, Peter Bickel, and Bo Li. Control System Design: An Introduction
to State-Space Methods. Dover Publications, Inc. Mineola New York, 1986.

[5] Bengtsson, Thomas, Peter Bickel, and Bo Li. Probability and Statistics: Essays in
Honor of David A. Freedman. Institute of Mathematical Statistics, Beachwood Ohio,
2008.

[6] Bimbo, Alberto De and Fabrizio Dini. “Particle Filter-Based Visual Tracking with
a First Order Dynamic Model and Uncertianty Adaptation”. Computer Vision and
Image Understanding, 115(6):771–786, June 2011.

[7] Burl, Jeffrey R. Linear Optimal Control: H2 and H∞. Adddison Wesley Longman,
Inc., Menlo Park California, 1998.

[8] Burtch, Robert C. “History of Photogrammetry”. SURE 340 Lecture Notes.

[9] Corporation, Nikon. “Digital SLR Camera Basics”. Online Topic Notes. URL
http://imaging.nikon.com/history/basics/19/01.htm.

[10] Daniel D. Doyle, Alan L. Jennings and Jonathan T. Black. “Real-Time, Multiple PTZ
Camera Object Tracking using Optical Flow Background Estimation”.

[11] Doucet, Arnaud, Nando de Freitas, and Neil Gordon (editors). Sequential Monte
Carlo Methods in Practice. Springer, 2001.

[12] Doyle D. Doyle, Lieutenant Colonel. Real-Time, Multiple, Pan/Tilt/Zoom, Computer
Vision Tracking, and 3D Position Estimating System for Small Unmanned Aircraft
System Research. Ph.D. thesis, Air Force Institute of Technology, 2013.

[13] Gordon, N.J., D.J. Salmond, and A.F.M. Smith. “Novel approach to nonlinear/non-
Gaussian Bayesian state estimation”. Radar and Signal Processing, IEEE Proceed-
ings F, 140:107–113, Apr 1993.

267

http://ieeexplore.ieee.org/servlet/opac?punumber=1000147
http://www.stat.ucla.edu/history/essay.pdf
http://imaging.nikon.com/history/basics/19/01.htm

[14] Hammersley, J. M. and K. W. Morton. “Poor Man’s Monte Carlo”. Journal of the
Royal Statistical Society. Series B (Methodological), 16(1):23–38, 1954.

[15] He, Ting, Chatschik Bisdikian, Lance Kaplan, Wei Wei, and Don Towsley. “Multi-
Target Tracking Using Proximity Sensors”. Military Communications Conference,
2010 - MILCOM 2010, October-November 2010.

[16] Li, Anping, Zhongliang Jing, and Shiqiang Hu. “Robust Observation Model for
Visual Tracking in Particle Filter”. AEU - International Journal of Electronics and
Communications, (61):186–194, 2007.

[17] Liu, Jie, Wilson Wang, and Fai Ma. “A Regularized Auxiliary Particle Filtering
Approach for System State Estimation and Battery Life Prediction”. Smart Materials
and Structures, 20(7):075021, 2011.

[18] Magree, Daniel P. A Photogrammetry-Based Hybrid System For Dynamic Tracking
And Measurement. Master’s thesis, Air Force Institute of Technology, June 2010.

[19] McElhoe, Bruce A. “An Assessment of the Navigation and Course Corrections for a
Manned Flyby of Mars or Venus”. IEEE Transactions on Aerospace and Electronics
Systems, AES-2(4):613–623, 1966.

[20] Orderud, Fredrik. “Comparison of Kalman Filter Estimation Approaches for State
Space Models with Nonlinear Measurements”, 2005. URL http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.135.9250.

[21] Papoulis, Athanasios (editor). Probability, Random Variables, and Stochastic
Processes, 2nd ed. New York: McGraw-Hill, 1984.

[22] Smith, Gerald L., Stanley F. Schmidt, and Leonard A. McGee. “Application for
Statistical Filter Theory to the Optimal Estimation of Position and Velocity on Board
a Circumlunar Vehicle”, 1962.

268

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.9250
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.135.9250

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2012–Mar 2014

Computer Vision Tracking Using Particle Filters for 3D Position
Estimation

14Y151

Kenerley, Kyle D., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENY-14-M-28

Air Force Research Labs
Space Vehicles Directorate
3550 Aberden Ave.
Kirtland AFB, NM 87117

AFRL/RV

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
This line of research seeks to increase knowledge of a tracked target using the particle filter, also known as Sequential
Monte Carlo (SMC) methods. The target is tracked using vision based observations. These observations were simulated
using both dual cameras and a single camera. If only a single camera tracks the target, depth cannot be determined
directly and is considered an unobservable state. Filters can estimate this unobservable state using a dynamic model and
data from the image. However the movement of the target is nonlinear which eliminated filters traditionally used to track
motion such as the Kalman filter and its variants. The particle filter is an alternative that can track nonlinear motion,
but was not feasible until recently due to its computational requirements. Simulations of nonlinear target movement,
first in two dimensions, then three, evaluated the particle filter’s feasibility and performance. Subsequent simulations
evaluated the particle filter’s ability to track a target using dual and single camera observations. Evaluation tests were
devised to characterize the performance of each filter. Analysis metrics were produced to analyze the results of these
tests. Linear and Kalman filters were also devised to serve as additional comparisons to the particle filter. Results for
dual camera observations demonstrated the filter could track the target and determine unobservable states, however
results for the single camera observations indicated the filter was problematic since it could not return accurate depth
estimates and suffered from severe weight collapse.

15. SUBJECT TERMS
particle filter, vision, tracking

U U U UU 289

Dr. Alan L. Jennings (AFIT/ENY)

(937) 255-3636 x7495 alan.jennings@afit.edu

	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	General Issue
	Problem Statement
	Research Objectives/Questions/Hypothesis
	Research Focus
	Methodology
	Assumptions/Limitations
	Implications
	Overview

	Literature Review
	Overview
	Photogrammetry
	Optical Flow
	Filters
	Particle Filter
	Conclusion

	Methodology: Prototype Filters
	Introduction
	System Design Approach
	Prototype Particle Filter A: Single Variable Tracking
	Prototype Particle Filter B: Multi-Variable Tracking and Hidden State Determination

	Methodology: Application Filters
	Introduction
	System Design Approach
	Evaluated Particle Filter A
	Evaluated Particle Filter B
	Weight Collapse Mitigation

	Simulation Tests and Results
	Introduction
	Particle Filter Performance Evaluation
	Evaluated Particle Filter A
	Evaluated Particle Filter B

	Conclusions and Future Work
	Conclusion
	Practical Considerations
	Future Work

	Appendix: MATLAB Code
	Introduction
	Prototype Particle Filter A
	Prototype Particle Filter B
	Evaluated Particle Filter A
	Evaluated Particle Filter B

	Bibliography

